3D集成电路将如何同时实现?
FEOL型通孔是在所有CMOS工艺开始之前在空白的硅晶圆上制造实现的(图2)。使用的导电材料必须可以承受后续工艺的热冲击(通常高于1000℃),因而只能选用多晶硅材料。在BEOL过程中制造的TSV可以使用金属钨或铜,而且在通常情况下,制作流程处于整个集成电路工艺的早期,以保证TSV不会占据宝贵的互连布线资源。在FEOL和BEOL两种情况下,TSV都必须设计进IC布线之中。
本文引用地址:http://www.amcfsurvey.com/article/92517.htmTSV也可以在CMOS器件制造完成之后制作。在键合工艺之前完成,或者在键合工艺之后完成。由于CMOS器件已经制作完成,因此在通孔形成时晶圆不需要再经受高温处理,所以可以使用铜导电材料。很明显,制作这些通孔的空白区域需要在设计芯片时就予以考虑。
如果可以选择,无论是FEOL还是BEOL方案,只要是在晶圆代工厂制作TSV,都是相对简单的选择。BEOL互连层是一个拥有不同介质和金属层的复杂混合体。刻蚀穿透这些层很困难,而且是由不同产品具体决定的。在完整的IC制造之后通过刻蚀穿透BEOL层来制作TSV会阻碍布线通道,增加布线复杂性并增加芯片尺寸,可能会需要一个额外的布线层。既然诸如TSMC(中国台湾省台北)和特许(新加坡)等晶圆厂已宣称他们有意向量产化TSV制造,那么在IC制造工艺中制作通孔将成为一个更切实可行的选择。
减薄
大多数3DIC工艺中,单个IC的厚度都远低于75μm。减薄器件晶圆有两种选择(图3)。在工艺A中,晶圆2以正面朝下的方式直接与IC叠层键合在一起。该晶圆接着被减薄到所需厚度,可能将TSV的背端露出。背面工艺顺序刻蚀出通孔(如果没在晶圆加工厂中实现的话),并制作出背面I/O焊盘。这样的叠层减薄也可以使用已知良好芯片(KGD)而非整个晶圆,以正面朝下的方式与芯片叠层键合。
在工艺B中,晶圆首先粘在一个临时承载晶圆上,通常是硅晶圆或者玻璃晶圆,之后进行减薄和背面工艺。IC晶圆以正面朝向承载晶圆的方式被粘合,因而必须在后面以正面朝上的方式与3DIC叠层键合在一起。由于晶圆与承载晶圆的临时键合是通过有机胶完成的,后续的工艺步骤需要限制在该有机胶稳定的温度范围内。
在减薄和最终的背面工艺完成之后,器件晶圆可与叠层进行对准和键合,之后与承载晶圆分离(晶圆到晶圆键合),或者器件晶圆经由承载晶圆直接释放到划片框的划片胶带上,KGD可以进行后续操作。
对像存储器这样单片成品率高、芯片尺寸一致的晶圆来说,W2W是最合适的。D2W键合则是用于单片成品率低和/或芯片尺寸不同的晶圆。由于D2W键合之后就无法继续利用整片晶圆进行低成本加工的特性,因此何时完成D2W组装非常关键。
形成通孔
目前“钻蚀”TSV的技术主要有两种,一种是干法刻蚀或称博世刻蚀,另一种是激光烧蚀(表1)。博世工艺十多年为MEMS工业而开发,快速地在去除硅的SF6等离子刻蚀和实现侧壁钝化的C4F8等离子沉积步骤之间循环切换。通过图4可以看出,在过去几年里,刻蚀速度稳步提高。
对于激光技术的重大进展,三星(韩国,首尔)已经在存储器叠层中采用了这一技术。大多数最新数据都来自于Xsil(爱尔兰,都柏林)的AlexeyRodin及其同事。作为一种不需掩膜的工艺,激光加工避免了光刻胶涂布、光刻曝光、显影和去胶等工艺步骤。然而,未来当TSV尺寸降到10μm以下时,激光钻孔是否可以进一步缩小,目前来看还存在一些问题。
通孔绝缘
通常氧化物(SiO2)绝缘层可以使用硅烷(SiH4)或TEOS通过CVD工艺沉积获得。如果TSV在芯片制造之后进行绝缘和填充,则需要小心选择沉积温度。为获得具有合适密度的功能性绝缘层,典型的TEOS沉积温度在275-350℃范围。
诸如CMOS图像传感器和存储器等应用,则要求更低的沉积温度。Alcatel(近期刚被Tegal收购,加州Petaluma)和其他的一些设备制造商最近开发了这类低温氧化物沉积技术。IMEC(比利时鲁汶)曾报道使用Parylene前驱体,可以在室温下进行沉积,可作为TSV的高效有机绝缘层。
评论