新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于提升小波的毫米波信号实时去噪*

基于提升小波的毫米波信号实时去噪*

—— Realtime MMW Signal Denosing Based on Lifting Wavelet
作者:罗磊 李跃华 栾英宏 南京理工大学电子技术与光电工程学院 时间:2009-03-17来源:电子产品世界收藏

  引言

本文引用地址:http://www.amcfsurvey.com/article/92478.htm

  毫米波具有抗干扰能力强、精度高、低仰角探测性能好、能够穿透等离子体等优点,已广泛应用于军事、民用等领域。在天线口径相同条件下,3mm波段相对其它波段具有波束窄、探测距离远、目标定位准确等优点[1]。然而探测器回波信中含有各种噪声干扰,需进行去噪处理,选用适当的去噪方法可尽量减少噪声对目标识别结果的影响。小波分析与傅立叶分析相比,具有良好的时频局部特性和多分辨分析特性,在去噪领域应用广泛。传统小波的构造是以傅立叶变换为基础,而小波变换则是直接在时域分析问题,完全脱离了傅立叶变换,并且所有传统小波都可以通过提升方法构造出来[2]。Koichi Kuzume等人实现了基于FPGA的提升小波实时信号处理[3];A.R.Calderbank、Michael D.Adams等研究了整数小波变换及整数提升小波变换[4][5];国内很多人研究了基于小波变换的信号去噪[6][7]。采用提升小波进行信号去噪,运算速度快,耗费存储空间少,可实现整数小波变换,易满足信号处理的实时性要求。

  3mm波段小型化应用时信号处理系统的硬件平台浮点处理能力差,要求去噪算法最好为整数间的运算,考虑信号处理的实时性,算法的复杂度要适合硬件平台的运算速度。本文选用在基于TMS320VC5509A型的硬件平台上实现了回波信号的处理。

  提升小波变换

  提升小波变换由三个基本步骤构成:(1)分解,将原始离散信号分割为两个互不相交的子集,例如将信号x(n)按位置分为奇偶序列xo(2n+1)和xe(2n),即常用的lazy小波变换。(2)预测,又称对偶提升。定义预测算子P来产生小波系数d,其表达式为:d=xo-P(xe),即用xe去预测xo产生的误差。由于信号有局部相关性,信号某一点的值可以通过其相邻的值经合适的预测算子来预测,预测误差就是信号的高频信息。(3)更新,又称原始提升。通过更新算子U产生尺度系数c,其表达式为:c=xe+U(d),即用d来调整信号的下采样xe,得到信号的低频分量。以上三个步骤为提升小波变换的前向变换,而逆向变换只需改变前向变换公式中的正负号和颠倒计算步骤次序。

  是具有对称结构的双正交小波,其分解端与重构端的滤波器长度分别为5和3,消失矩都为2,广泛应用于滤波及图像处理等领域。其提升系数分别为α=-1/2,β=1/4,可表示为1/2n(n为整数),运算过程只含有加法和移位运算,大大加快了运算速度,利于通用计算机以外的硬件平台的实现。基于整数的算法步骤为:

  (1)xo(n)=x(2n+1),xe(n)=x(2n)

  (2)d1(n)=xo(n)+int(α(xe(n)+xe(n+1))+1/2)

  (3)c1(n)=xe(n)+int(β(d1(n)+d1(n-1))+1/2)

  其中int(·)表示取整运算。

  回波信号去噪效果分析

  小波域阈值滤波法实现简单,计算量小,是目前应用最广泛的一种小波去噪算法,可分为软阈值函数法和硬阈值函数法。软阈值函数法是将绝对值小于阈值的小波系数替换为零,绝对值大于阈值的小波系数用阈值来缩减,其表达式为:

  硬阈值函数法是将绝对值小于阈值的小波系数替换为零,绝对值大于阈值的小波系数保持不变,其表达式为:

 



上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭