利用MAXQ3210构建水位监测报警系统
环形振荡器的工作频率设置在8kHz,实际频率可能因不同器件而变化。频率还会随着温度和电源电压的变化而变化,因此,如果应用需要精确定时,则需考虑这些变化因素。在本应用中,频率的精确性并不重要。
本文引用地址:http://www.amcfsurvey.com/article/83211.htm由于处理器在停机模式时,晶体振荡器不工作,本应用中唤醒定时器必须设置为工作在环形振荡器下(WTCS = WUTC.2 = 1)。系统也可以使处理器工作在晶体振荡器下,而唤醒定时器则工作在环形振荡器下。考虑到对唤醒定时器寄存器的读/写操作存在时序差异,本文没有采用这种方法。
低电池电压检测
MAXQ3210配备了低电池电压检测电路,将低电池电压检测(LBDE)使能位PWCN.1置1,一旦输入电源VDD降至低电池电压门限VBF以下,低电池电压中断标志位(LBF) PWCN.3将由处理器的硬件置位。如果中断使能,该中断标志位将触发一次中断,但该中断在此应用中没有使用。每次处理器退出停机模式并检测水位传感器时,会检测一次中断标志位。如果电池电量过低,扬声器将每次发出8声蜂鸣声,然后停止一分钟,并如此循环。
评估板注意事项
为本应用编写的程序已在MAXQ3210评估板上进行过测试。在这个开发环境下工作时,需要注意以下事项。第一,需注意处理器工作在环形振荡器下,通过串口至JTAG板实现与评估板的通信,由处理器调试/JTAG总线完成。JTAG时钟不能高于处理器时钟的1/8。如果工作在环形振荡器的处理器违反这条规定,JTAG接口板将无法与评估板进行通讯。JTAG接口板没有从评估板上收到恰当信息时,PC机软件将认为通讯失败。发生这种情况时,PC机显示一个错误消息,调试器被挂起。在将时钟源更改为环形振荡器的程序之前插入一个长延时可以避免这种情况。上电复位时环形振荡器选择位RGSL清零。插入这段延时,调试器就有时间在环形振荡器正常工作之前获得开发板的控制权。提供延时的程序在源文件中被‘加注释’,但作为一个解决方案实例被保留在文件中。
另外一个需要注意事项是开发板上的MAX5160LEUA数字电位器,当跳线J11短路时,这个器件连接至电压比较器的输入端CMPI,该设计为在输入端加载各种不同的电压提供了便利。电位器的内部电阻链的末端H连接至评估板电源VCC5;另一端L连接至地,滑动端W连接至CMPI。数字电位器的H-L端电阻为50k,阻值比CMPI的高阻输入(FET输入)低得多。在本应用中,开发板的短路器J11被去除。数字电位器没有与CMPI连接,以充分利用其输入端的高阻特性。
虽然对本应用并不重要,但在实际工作环境下,不同类型、品牌的电池在使用时的限制有很大差异。MAXQ3210的低电池电压检测门限设置在大约7.2V,这个设定值适合绝大多数碱性电池的应用。一块新的9V碱性电池在检测到低电池电压后会在一段合理的时间内正常报警,而有些电池在极端环境下可能允许的报警时间非常短。
对于任何最终投产的产品设计,都必须考虑、检验电池类型及外部工作环境。所提供的应用软件、评估板的扬声器将通过声控报警指示电池电量过低,直至电池电量降至系统复位状态。此时,电池将被耗尽,为了继续工作就必须更换电池。
测试本应用笔记方案时,为了节省电池功耗,去除了开发板的电阻R1和R2。这两个电阻分别是发光二极管LED D1和D2的限流电阻,该应用不需要LED。
结论
MAXQ3210微控制器所包含的诸多功能使其不仅适用于化学检测器、报警系统以及白色家电等注重成本的电池供电应用,还适用于那些要求高性能、低功耗的应用。微控制器内部集成的5V至9V稳压器、压电扬声器驱动器和模拟比较器使系统元器件数量最少。另外,当系统使用单节9V电池供电时,系统内置8kHz的环形振荡器、低电池电压检测电路、20位唤醒定时器和低功耗停机模式等功能可有效支持系统的低功耗工作,延长系统的工作时间。
评论