用复位发生器和电压监控器来避免故障
摘要: 介绍用可编程电源管理器件,莱迪思公司的 POWR607对电压进行监控,产生复位信号的解决方案。POWR607是在系统可编程器件,配置存储在片上E2CMOS存储器中。
本文引用地址:http://www.amcfsurvey.com/article/82064.htm关键词: 在系统可编程;POWR607;可编程电源管理器件
工程师经常会受到来自市场的压力,迫使他们增强产品的特性,同时降低产品的成本和结构。使用集成电路和高集成度的微处理器时会遇到这样的挑战。然而,这些元件需要用多种低电压供电。输入到电路板上的电源(或者DC-DC转换器)产生这些电压。 为了提供如同单一 电源电路板那样的可靠性,对电路板上所有的电源都要进行监控。新一代的电压监控器和复位产生器使得多电压的监控更加容易。
什么是复位产生器和电压监控器?
大多数微处理器提供“复位”引脚能使外部的硬件从固定的存储器位置开始执行程序。这个引脚由外部的集成电路驱动,称为复位产生器。在所有为处理器供电的电源都开启之后,在短暂的时间激活复位信号。外部的手动复位输入时,复位产生器也能激活复位信号。
当关闭电路板上的电源,或者电路板上的电源有一个有故障时会发生什么情况?
输入电源关闭时,电路板上所有的电压都关闭,输出电压开始下降。另一方面电源有故障时,输出电压会降至规定的电平之下,或者升高至有危险的电平。电源电压下降时,处理器不能够正确地执行指令,会跳转到其它存储器位置。因此,处理器会冲掉Flash存储器的内容,使系统不能正常工作。
为了防止这样的系统故障,使用了电压监控集成电路。电压监控集成电路监控电源电压,有任何电源发生故障时中断电路板上的处理器。处理器可以终止当前的操作,或者保存关键信息。此后,复位发生器使处理器处于复位状态,直到所有的电源都关闭。
图1 微处理器电路板的方块图
图1为简单处理器电路板的方块图。微处理器的内部电压和I/O电压向微处理器供电。图中展示了存储器、ASIC和Flash存储器和与之相关的电压。
电压监控器和复位产生器的运作
复位产生器等待所有的电压达到稳定状态,于是在复位脉冲持续一段时间后(取决于电容值),发出CPU的复位信号。然后使能Flash存储器写功能。如果上电时电路板上的任何一个电压有故障,就不会向处理器发出复位信号,以防止破坏Flash存储器。
所有电源开启时,监控器监控所有的电压(包括输入电源)。如果任何一个电压有故障,监控器向处理器发出一个中断信号,在短暂的时刻后,激活CPU复位,并关闭Flash写信号。监控器的有效性取决于其电压监控精度和对电压故障检测的速度。
针对监控器选择电压监控阈值
在图1中,CPU内部电压指定为1V ± 5%。监控器监控阈值应设置成1V-5%= 0.95V。设置后,当VCC-CPU内部电压低于0.95V时,监控器集成电路产生低电压中断信号。5个被监控电压中的任何一个低于对应的电压阈值时,图1中的监控器集成电路激活CPU中断信号。
电压监控精度
对于图1中的监控器,2%的0.95V阈值精度意为可以在任何点激活CPU中断信号,从0.95V+2%至0.95V-2%(0.97V至0.93V)。使用监控器集成电路时,监控器阈值应该设置在0.97V,防止处理器工作在低于其可容忍的电平。然而,这个设置限制了DC-DC转换器容限。通常精度为1%的监控器提供最佳的解决方案。
监控故障检测延时
测量故障检测延时指从 电源电压降到低于监控器的阈值至监控器指明故障的输出时间。然而在故障检测延时期间,电源电压继续下降。延时越长,在报告故障的时刻电源电压越低。因此,故障检测延时应该尽可能的短(最佳为数十微秒)。
用Power Good 信号监控电源电压
DC-DC转换器的PG(Power Good)信号指明了电压已经到达了其电压的近似90%。在图2所示的电路,所有的PG信号和手动复位信号都连接到PLD(可编程逻辑器件)。PLD产生CPU复位信号、中断CPU,通过逻辑方程关闭Flash写信号。这种方法还经常用来实现电源定序。
评论