新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 便携式媒体播放器的电源管理分组技术(06-100)

便携式媒体播放器的电源管理分组技术(06-100)

——
作者:德州仪器 Patrick Heyer时间:2008-04-07来源:电子产品世界收藏

   芯片组使播放器能用作便携式 导航系统,而 FM 调谐器 IC 则能接收无线电广播。

本文引用地址:http://www.amcfsurvey.com/article/81259.htm

  需要几种类型的存储设备和处理内存。处理器通常与闪存存储器协同工作,并利用 EEPROM 存储配置数据和操作系统。音频和视频数据可存储在 SD 卡等移动存储介质上,而内置硬盘驱动器通常可存储较大的数据资料。

  处理器、存储器和显示屏构成整体系统,需要不同的电压轨和大量电力。我们必须高效管理电池,实现高效充电,尽可能提高电池到系统的电压转换效率。电池通常是一节锂离子电池,电池容量根据整体用电需求在 1200 至 2000mAh 之间,充电电流应高于 1A。锂离子 (Li-Ion) 电池充电器能安全准确地给电池再充电,而精确的电池电量监测设备可确定充电状态,并有助于系统最大限度利用任何可用电量。

  数个转换器将电池电压转换为系统电压。3.3 V 的高电流轨可用于对带有显示控制器与背光功能的TFT LCD显示模块、高量漏极(HDD)、处理器 I/O 以及音频编解码器供电。处理引擎要求的内核电压相对较低,1.2 或 1.8 V 即可。音频与 RF 组件可能需要用线性稳压器来实现稳压输出,以便滤掉开关转换器纹波。

  我们有必要更密切地关注一下电源管理系统的分组。通常人们会认为,与数字组件类似,电源系统也应尽可能集成。但这会带来严重的问题。如果将线性电池充电器与功率转换级集成,就会在集成度极高的板级空间造成散热问题。此外,电池充电器通常靠近电池与 AC 适配器的连接处,而功率转换级的理想位置是接近负载点,即处理系统。还有一点值得注意的是,不同型号的媒体播放器根据用途不同要求不同的充电器特性,但功率转换系统都是一样的。鉴于上述原因,最节约成本、设计也最方便的解决方案就是将电池管理与功率转换分由不同的IC来完成,如图 1 所示。这不仅有助于最大化设计灵活性,简化布局与散热管理,而且还能够降低解决方案的总成本。

  为了维护安全工作条件并最大化电池工作时间,电池充电器应确保锂离子电池的充电过程符合制造商的规范。要实现这一目标,就要采用恒流恒压 (CCCV) 的充电方案,并确保稳压精度小于 1% ,以避免出现过度充电。我们应识别出剩余电量极低的电池,先以一定比例的最大充电速度给它充电,慢慢提高电池电压,然后再进入快速充电模式。此外,充电器应通过专门的温度传感引脚 (TS) 测量电池的温度,避免在 0 ℃~40℃ 范围之外进行充电,从而尽可能延长电池的工作时间。

  不管电源来自 USB 端口还是 AC/DC 墙上适配器,充电器都应对充电工作加以管理。就某些应用而言,充电 IC 的电力来自高压前端 DC/DC,电池可直接从高压电源进行充电,如轿车或卡车所用的电池就是这种情况。输入引脚上的额定输入电压最大可达 18 V,这不仅能避免系统在DC 电源线路上出现过压峰值,而且还能使用价格较低的非稳压墙上电源。充电 IC 可以确定进入电池的实际充电电流和系统所用的电流。因此,电池充电和系统运行同时进行的情况下,充电过程也不会出现非正常终止问题。上述解决方案实现了动态的电源管理,在系统和电池间合理分配可用的 DC 输入功率。如果系统电流上升,电池充电电流会自动降低,反之亦然,从而满足整体供电量的要求。这有助于优化成本,使墙上电源也能满足系统整体的平均用电需要,兼顾电池充电和应用运行,而不是必需采用满足最严格用电条件的电源。

  我们在微型的 3.5mm x 4.5mm QFN 封装中集成了所有必需的充电控制和电源通道电源晶体管,从而使解决方案的整体尺寸达到了最小化。此外,我们还可使媒体播放器系统在电池充电器给电池充电的同时实现睡眠模式下工作。充电器将根据检测到的最小电流终止充电,并提供可编程定时器,进一步提高安全性。

  我们可用电池电量监测计来精确测定剩余电池电量,从而进一步改善电池管理。这样,处理器就能有效采用低功耗模式,并在需要充电时提醒用户,从而更好地管理媒体播放器的功耗。

超级电容器相关文章:超级电容器原理


光电开关相关文章:光电开关原理


评论


相关推荐

技术专区

关闭