基于SystemView仿真的数字频率合成器
——
1 频率合成技术原理
频率合成的方法很多,最常用的频率合成技术有3种:直接频率合成、直接数字频率合成、锁相频率合成。
直接频率合成法是直接通过倍频器、分频器、混频器对基准频率进行加、减、乘、除等运算,以得到各种所需频率。其优点是频率转换速度快,并能产生任意小的频率增量。但他也存在一些不可克服的缺点,要求基准信号的功率较大,由于大量的倍频、混频、滤波等电路,合成器的设备十分复杂,而且输出端的谐波、噪声及寄生频率难以抑制。
直接数字频率合成随着超高速数字电路的发展而兴起,主要是通过微处理器求解数学递推方程或者直接查正弦表得来,其输出波形是部分合成。其优点主要是分辨率高、控制灵活、容易做到比较低的频率,但是由于受器件的时钟频率控制,输出频率上限不能太高,而且总的输出噪声电平可能比较高。
锁相频率合成技术是基于锁相环的同步原理,利用锁相环路的窄带跟踪特性得到不同的频率。锁相频率合成又有直接锁相和数字锁相2种。倍频器实际上就是直接锁相的一种,而数字锁相是在锁相环路中插入一个分频比可变的分频器,通过CPU控制可获得不同的频点。如图1所示是一个典型的直接式锁相环频率合成器的原理图。他由参考振荡源、参考分频器、锁相环3部分组成。
其中的锁相环与普通锁相环不同的是,他在VCO的输出端和鉴频器的输入端之间的反馈回路中加入了一个可变分频器。如图1所示,高稳定度的参考振荡源信号经R次分频后,得到频率为fR的参考脉冲信号。同时压控振荡器的输出经N次分频后得到频率为fN的脉冲信号,2个脉冲信号在鉴相器进行相位比较。当环路处于锁定状态时,则有输出信号:fo=N
分频器相关文章:分频器原理
评论