失调电压与开环增益—它们是“表亲”
设计人员有时会发现运算放大器产品说明书规范令人费解,因为并非所有性能特性都有最小规范或者最大规范。有时,您必须使用规范表或者典型性能图表中的“典型值”。但是,这个“典型值”到底是什么意思呢?它的变化范围是多大呢?
本文引用地址:http://www.amcfsurvey.com/article/284652.htm要想回答这个问题并不容易,它取决于具体的规范。下面,我们对容易引起疑问的 3 个特性进行逐一说明:
带宽——运算放大器的增益带宽积 (GBW) 主要由输入级电流和片上电容值控制。这两个变量的变化,可产生的 GBW 变化范围为 ±20% 左右。看起来,这是一个比较宽的范围,但是通过选择一个大裕量的运算放大器,却可以更加轻松地进行大范围 GBW 设计。如果必要,可以利用一些反馈组件,对您的应用的闭环带宽进行控制。请注意,在开环增益/相位图(请参见图 1)上,这种变化看起来非常的小。
转换率受到诸如带宽、内部电流和电容等相同变量的影响。通常,选择比最低需求速度高 20% 的运算放大器便已足够。或许,您希望在一些重要的应用中拥有更多的裕余量。大多数应用并不会将放大器推高至其转换率极限值附近,因此这样做并无问题。
电压噪声——放大器的宽带或者平带电压噪声主要取决于一个或者多个输入级晶体管的电流。大电流会以一种平方根的方式降低噪声。因此 20% 的电流变化,可带来约 10% 的平带噪声密度变化(请参见图 2)。
低频 1/f 噪声(也称作闪烁噪声)是另一回事,它的变化范围更大。1/f 区的噪声振幅在约 3:1 范围变化。JFET 和 CMOS 制作工艺的差异可能稍大一些。该噪声区域决定低频带(通常规定为 0.1 到 10Hz)的峰值到峰值噪声大小。
的确存在一些较好的指导原则,但却无法详细说明放大器设计和所用 IC 工艺的确切变化范围。但是,有一些资料总比没有强,并且大多数设计都可以较好地适应这些估计差异。
适合于您的应用的裕量,可能会随您设计的设备(也可能是您正进行的终端产品测试)类型而变化。裕量与规范不符会影响您设计针对的目标余量。这种“工程判断”是良好模拟设计的一个重要因素。
评论