基于位置指纹算法的Android平台WiFi定位系统
对无线信号的平滑提出如下改进方案:
本文引用地址:http://www.amcfsurvey.com/article/270826.htm①每隔1 S采集一次所有的信号组,假设其中一组的信号强度值是level,再连续间隔采集二次;
②如果连续采集三次的信号强度值均介于[1evel - 1,level+1]时,将该数据插入数据库,否则舍去前面的所有信号值,重新返回步骤①;
③将步骤②获取的多组无线信号强度值再求均值,存入离线数据库。
利用改进的方案将图5平滑处理后,改进前的信号强度值RSS=1.597 1,而改进后的RSSI=-46.I47 1,可见本方案能够去除一定的抖动信号,得到较为理想的离线数据库。该方法不仅用于离线数据采样阶段,而且应用于在线定位阶段实时采集当前无线信号强度,可避免单次采集的不确定性。
针对设备差异对无线信号的影响,首先在同一位置用华为两款不同型号手机对WiFi信号采集300次,无线信号分布情况如图6所示。C8812型号手机采集信号强度保持在一65~66 dB,P6型号手机信号强度保持在一45dB,不同型号手机可能造成的误差达2O dB,若按此进行定位将产生较大定位误差,因此本文将在实时定位之前加上无线信号校正阶段,能有效提高定位精度。
图6不同手机无线信号分布图
为解决设备差异对WiFi定位造成的影响,Ekahau提出一种自动校正的方法。它是通过分析跟踪设备在一些易于检测的区域时的信号变化,自动学习跟踪建立相应的映射关系,该方法的缺点是设备不易进入易检测区,系统很难获得充足的数据建立映射关系。Haeberlen的研究显示,校正设备与测试设备之间的信号强度之间存在某种线性关系。本文经过大量实验,统计获得数据并通过函数拟合的方法,推导出校正设备及测试设备的关系,可以看作y=ax+b的线性关系,参数a、b将由实际的数据获得。
4实验结果与分析
实验区域为10 m×16 m,每隔1.5 m设定为一个采样点,AP分布在该区域的四周如图7黑色圆点位置,每个采样点分别采集200次经过平滑处理后存入离线数据库。为比较定位结果的精确性,选定如下5个点为测试点:A位于出口处附近,B位于区域的中心位置,C、D、E点位于区域的边界处。
图7采样分布图
改进前和改进后分别进行4O次测试,实验结果分析如表1所列。应用改进后的算法各测试点的平均误差均有所下降,A点位于出口处,可能会受其他因素影响,定位效果不明显;B、D点,受外界影响较小,定位效果较好,定位精度提高2 m左右。
评论