新闻中心

EEPW首页 > 消费电子 > 设计应用 > 基于VerilogHDL的FIR数字滤波器设计与仿真

基于VerilogHDL的FIR数字滤波器设计与仿真

作者:时间:2015-01-05来源:网络收藏

  引言

本文引用地址:http://www.amcfsurvey.com/article/267699.htm

  是语音与图像处理、模式识别、雷达信号处理、频谱分析等应用中的一种基本的处理部件, 它能满足波器对幅度和相位特性的严格要求, 避免模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题。有限冲激响应()滤波器能在设计任意幅频特性的同时保证严格的线性相位特性。

  1

   滤波器用当前和过去输入样值的加权和来形成它的输出, 如下所示的前馈差分方程所描述的。

  

 

  FIR 滤波器又称为移动均值滤波器, 因为任何时间点的输出均依赖于包含有最新的M个输入样值的一个窗。由于它的响应只依赖于有限个输入, FIR 滤波器对一个离散事件冲激有一个有限长非零响应, 即一个M阶FIR 滤波器对一个冲激的响应

  在M个时钟周期之后为零。

  FIR滤波器可用图1 所示的z 域块图来描述。

  其中每个标有z- 1 的方框都代表了有一个时钟周期延时的寄存器单元。这个图中标出了数据通道和必须由滤波器完成的操作。滤波器的每一级都保存了一个已延时的输入样值, 各级的输入连接和输出连接被称为抽头, 并且系数集合{hk}称为滤波器的抽头系数。一个M阶的滤波器有M+1 个抽头。通过移位寄存器用每个时钟边沿n( 时间下标) 处的数据流采样值乘以抽头, 并且求和得到输出yFIR[n]。滤波器的加法和乘法必须足够快, 在下一个时钟来到之前形成y[n]。并且在每一级中都必须测量它们的大小以适应他们数据通道的宽度。在要求精度的实际应用中, Lattice 结构可以减少有限字长的影响, 但增加了计算成本。一般的目标是尽可能快地滤波, 以达到高采样率。通过组合逻辑的最长信号通路包括M级加法和一级乘法运算。FIR 结构指定机器的每一个算术单元有限字长, 并且管理运算过程中数据流。

  

 

  2 FIR 设计的实现

  目前FIR 滤波器的实现方法有三种: 利用单片通用数字滤波器集成电路、DSP 器件和可编程逻辑器件实现。单片通用数字滤波器使用方便, 但由于字长和阶数的规格较少, 不能完全满足实际需要。使用DSP 器件实现虽然简单, 但由于程序顺序执行, 执行速度必然不快。FPGA/CPLD 有着规整的内部逻辑阵列和丰富的连线资源, 特别适合于数字信号处理任务, 相对于串行运算为主导的通用DSP 芯片来说, 其并行性和可扩展性更好。但长期以来, FPGA/CPLD 一直被用于系统逻辑或时序控制上, 很少有信号处理方面的应用, 其原因主要是因为在FPGA/CPLD 中缺乏实现乘法运算的有效结构。

  现在的FPGA 产品已经能够完全胜任这种任务了。其中Altera公司的Stratix 系列产品采用1.5V 内核, 0.13um 全铜工艺制造, 它除了具有以前Altera FPGA 芯片的所有特性外, 还有如下特点: 芯片内有三种RAM 块, 即512bit 容量的小RAM(M512) 、4KB 容量的标准RAM(M4K) 、512KB 的大容量RAM(MegaRAM) 。内嵌硬件乘法器和乘加结构的DSP 块, 适于实现高速信号处理; 采用全新的布线结构, 分为三种长度的行列布线, 在保证延时可预测的同时增加布线的灵活性; 增加片内终端匹配电阻, 提高信号完整性, 简化PCB 布线; 同时具有时钟管理和锁相环能力。

  FIR 滤波器的 HDL 设计实例

滤波器相关文章:滤波器原理


滤波器相关文章:滤波器原理


低通滤波器相关文章:低通滤波器原理


电源滤波器相关文章:电源滤波器原理


数字滤波器相关文章:数字滤波器原理
锁相环相关文章:锁相环原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭