传感器是大数据的重要来源
全新的物联网(IoT)应用——从医疗、智能能源到牲畜饲养——推动了更多分层智能的需求,可以解决安全性和隐私性问题,并且管理剧增的数据量。
假设一场会议同时传送到三个城市的观众。当主持人向观众提问时,观众可以举手回答,对观点表示赞同。当举行投票时,全部三个城市的总投票数会实时呈现在主持人和观众面前。
实际上,这种未来的场景最近在飞思卡尔已经变成了现实。从某种程度上讲,我们做到了这一点,它展示了物联网(IoT)的巨大潜力。它的运行原理如下。每一名观众都佩戴了内置运动传感器的腕带。腕带的传感器数据可以捕捉观众腕带的运动。为了将这种动作消耗的通信带宽降到最低,同时降低无线通信的功耗,在腕带中运行的背景感知算法可以翻译传感器数据,并且寻找匹配用户抬手的垂直位置动作数据模式。当标志性运动出现时,腕带就会将数据传送到大会现场的无线接入点。
无线接入点将从腕带接收的数据做好时间标记,然后迅速将信息转发到云应用。这些应用会利用所有三场会议地点的腕带结果,推算出主持人发起投票的时间。尽管腕带中运行的算法可以识别垂直运动,但是传感器难以分辨出垂直运动的细微区别,究竟是用户正在举手,还是单纯因为观众烦躁不安或正在起身。然而,云环境的智能可以注意到,在狭窄的时间窗口期间大部分观众携带的传感器正在同时向上移动,由此推断会场正在投票。
源头的传感器
这个例子说明了物联网(IoT)的众多架构挑战(参见图1)。在物联网(IoT)互联设备的源头通常都是一个或多个传感器。传感器将物理环境(例如运动、磁场或周围环境)的信号转化为数字数据。因为传感器可以连续且自动提供数据,传感器数据会快速超越人工产生的数据量。为了缓解数据堵塞及其相关的传输成本,智能传感器可以实时做出数据的重要或相关决策,只有当这些决策对上游应用有重要作用时才会传输这些数据。例如,运动传感器的算法可以确定传感器已经静止并且跳过一次更新。更加复杂的背景算法能够区分佩戴者抬手和其它运动(比如起身)之间的细微差异。在数据源部署智能会降低传感器数据消耗的通信带宽,并且延长电池驱动无线传感器节点的电池使用时间。但是,传感器节点的计算容量比云计算的成本更高,针对特定应用设计的智能传感器面向不同的用途时可能效率较低。
在安全性十分重要的环境中,数据源的智能也至关紧要。目前正在探讨各种不同的安全性和隐私性协会,这需要云应用和许可数据源(使用部分或全部数据)之间的协商。这在可穿戴式传感器领域特别敏感,它可以记录对个体看似毫无意义的各种信号。采用数据挖掘算法时这些信号与其它信号结合在一起,它们会无意间泄漏消费者隐私。
物联网相关文章:物联网是什么
传感器相关文章:传感器工作原理
风速传感器相关文章:风速传感器原理
评论