基于MIMO的LTE数字直放站技术研究及系统应用
LTE(Long Term Evolution)是近两年来3GPP启动的最大的通信新技术研发项目,由于LTE标准具有更高频谱效率的无线接入技术及平滑的IP核心网络,相比于 2G/3G的移动网络,网络性能获得大幅度的提高,并明显降低了网络的运营成本。LTE作为新一代技术路标,其目标容量和数据速率的提高可支持对容量和性 能有较高要求的新业务和特征,随着必要的网络构架和技术改进,下行链路和上行链路通道数据速率更高,其中基于TDD的TD-SCDMA将演进到TDD- LTE,而基于FDD的WCDMA,CDMA2000将演进到FDD-LTE。移动数据业务的爆发式增长与智能手机的高速发展,正在加速移动宽带市场的发 展,2010年开始,FDD LTE已经进入全球化商用部署阶段,目前已遍及欧洲、北美、亚太和中东等。
7月13日,工业和信息化部有关负责人明确表示,将根据企业申请情况和所具备的条件,推动年内发放4G牌照,加快推进中国4G产业化发展。在国内, 中国移动近期启动的TD-LTE一期招标正在如火如荼地进行,此次招标建设的TD-LTE网络,建成后将是全球最大的4G网络。而中国联通仍会坚持FDD LTE的各项准备和实验工作,中国联通在4G时代的终端和网络上仍可能占优势。
因此未来1-3年LTE将会进入全面覆盖的时候,基站网络一旦形成,需要大量的直放站进行补充和支撑,以形成完整的覆盖网络,而且LTE通信的智能面很高,终端一般在室内,因此,各类数字化、多模化、集成化、智能化的直放站及其室内数字分布系统需求仍有较大的市场。
2.基于MIMO的LTE数字光纤直放站
2.1 整体架构
在移动通信领域,直放站是基站网络形成以后,进行盲区的覆盖补充和完善,新型数字光纤直放站是目前直放站中应用最广泛的。以典型的2*2MIMO的新型数字光纤直放站原理框图如图1所示:
远端机主要分为4个大模块:数字处理模块?RFIC收发模块?功放和双工器滤波模块。数字处理模块用于光传输的调制解调、数字上下变频、A/D转换等; 收发模块完成中频信号到射频信号的变换;再经过功放和滤波模块,将射频信号通过天线口发射出去。近端机更简单,主要比远端机少了低噪放和功放,其他原理和 远端机类似。
2.2 新型LTE数字直放站的主要技术
不用于传统的2G?3G数字光纤站,新型的基于MIMO技术的LTE数字直放站是将多路的射频信号数字化,采用RFIC射频集成技术?多路DPD线性处理技术、高效率功放技术、数字变频技术、多路基带信号处理技术、数字光端机、嵌入式软件辅助系统来完成。其主要特点是可提高直放站灵活性、抗外界干扰的能力、提高功放效率,满足节约型社会需要。同时在软件系统的帮助下,轻松实现升级扩容,组网方式灵活多变。其主要创新的技术包括以下几方面:
(1)射频小信号?数字硬件一体化技术及实现方案
由于要求直放站设备体积尽量小,整机系统子模块可以考虑高度集成?一体化设计,并作好结构的散热分析设计。为了低成本和小体积的设计考虑,采用一体化集 成RFIC芯片设计,如ADI的AD9362,Maxim的MAX2580等一体化集成芯片可以满足设计指标要求。其一体化集成芯片设计主要包括锁相环, 模拟宽带上下变频,ADC/DAC数据转换,以及中频滤波放大等。主要功能是对输入?输出数据进行各种放大?滤波和频率变换;由于正交分解后的I/Q 两路基带信号对上述后续处理往往带来很大的方便和良好的性能,大部分数字变频方案都采用了正交两路处理的典型结构。
(2)高效率高线性功放设计
总功率输出10W以上的功放,其功放模块采用了Doherty功放合成技术和先进算法的双通道分时处理的单路DPD技术相结合,使功放的线性和效率得到 很大的提高,既满足LTE信号对线性的高要求,又降低了设备功耗,减小运营商的运营成本。其功放模块的原理框图如图2。
①Doherty功放合成技术及实现
功率放大器的线性度和效率是设计功率放大器的重点。Doherty方法被认为是提高效率最有前景的一种结构。Doherty功放有一个主功放和峰值功放 构成,将输入信号的平均部分和峰值部分分开放大,然后合成,通过对输出的合路微带的设计,使峰值功放和主功放都起到Load-Pull的作用从而获得高效 率。数字预失真DPD与Doherty结合的结构具有很大的价值。
由于LTE系统采用了OFDM和64QAM调制方式,具有很高的峰值功率,因此本项目采用适当的削峰CFR技术,包络跟踪技术和2路Doherty合成等技术,进一步提高功放效率。
②功放部分采用了多通道分时处理的单路数字预失真DPD技术及实现
D P D技术的优点是不存在稳定性问题,有更宽的信号频带,能够处理含多载波的信号,效率较高。为了满足LTE调制信号对功放的高线性要求,新一代功放的DPD 技术得到了极大地发展。DPD算法的主要思想是对功放的非线性效应进行反向建模,以抑制它的非线性影响,使功放尽可能线性化。
另外LTE数字光纤站开发采用多天线技术,支持2天线,相应的下行功放输出有2路,采用射频开关切换,分别对其每路功放进行DPD数字预失真处理, 通过软件设计一定时间进行切换保持,可以保证每路的DPD的性能,比传统DPD方式减少了1路,节省了硬件空间,并节约了成本。
(3)CPRI支持大容量接口协议的研究
通用公共无线接口联盟(简称CPRI)是一个工业合作组织,致力于从事无线基站内部无线设备控制中心(简称REC)及无线设备(简称RE)之间主要接口 规范的制定工作。本项目采用XLINX公司的FPGA的方式,将CPRI接口部分和数字前端部分集成到一个芯片当中,从而提高了系统的集成度和抗电磁干扰 能力,降低了系统成本,同时FPGA的可再编程性,使得CPRI接口可以根据需要灵活调整,增强了不同设备厂商之间的设备兼容性。同时FDD-LTE 分布式基站Ir接口技术要求也已经制订出来相关标准。随着相关技术和标准的发展,CPRI标准也已不断进行了更新和升级。
4G移动通信LTE采用了MIMO技术,其数据容量增大了几倍,因此对于光纤数据传输相应的容量要求也更高了,现在XLINX/ALTERA/LATTICE等公司都新推出的各类型的FPGA可以满足低成本数据压缩设计的需求。本项目采用了XLINX数据压缩数据算法,降低了数字光模块的速率要 求,满足了低成本光纤传输的设计需求。
评论