新闻中心

EEPW首页 > 设计应用 > 正确选择数字隔离器的三要素

正确选择数字隔离器的三要素

作者:时间:2014-04-15来源:网络收藏

本文引用地址:http://www.amcfsurvey.com/article/259500.htm

多年来,工业、医疗和其他隔离系统的设计人员实现安全隔离的手段有限,唯一合理的选择是光耦合器。如今,在性能、尺寸、成本、效率和集成度方面均有优势。了解三个关键要素的特点及其相互关系,对于正确选择十分重要。这三个要素是:绝缘材料、结构和数据传输方法。

设计人员之所以引入隔离,是为了满足安全法规或者降低接地环路的噪声等。电流隔离确保数据传输不是通过电气连接或泄漏路径,从而避免安全风险。然而,隔离会带来延迟、功耗、成本和尺寸等方面的限制。数字隔离器的目标是在尽可能减小不利影响的同时满足安全要求。

传统隔离器——光耦合器则会带来非常大的不利影响。它们的功耗极高,而且数据速率低于1 Mbps.虽然存在更高效率和更高速度的光耦合器,但其成本也更高。

数字隔离器问世于10多年前,目的是降低光耦合器相关的不利影响。数字隔离器采用基于CMOS的电路,能够显著节省成本和功耗,同时大大提高数据速率。数字隔离器由上述要素界定。绝缘材料决定其固有的隔离能力,所选材料必须符合安全标准。结构和数据传输方法的选择应以克服上述不利影响为目的。所有三个要素必须互相配合以平衡设计目标,但有一个目标必须不折不扣地实现,那就是符合安全法规。

绝缘材料

数字隔离器采用晶圆CMOS工艺制造,仅限于常用的晶圆材料。非标准材料会使生产复杂化,导致可制造性变差且成本提高。常用的绝缘材料包括聚合物(如聚酰亚胺PI,它可以旋涂成薄膜)和二氧化硅(SiO2)。二者均具有众所周知的绝缘特性,并且已经在标准半导体工艺中使用多年。聚合物是许多光耦合器的基础,作为高压绝缘体具有悠久的历史。

安全标准通常规定1分钟耐压额定值(典型值2.5kVrms至5kVrms)和工作电压(典型值125Vrms至400 V rms)。某些标准也会规定更短的持续时间、更高的电压(如10 kV峰值并持续50μs)作为增强绝缘认证的一部分要求。基于聚合物/聚酰亚胺的隔离器可提供最佳的隔离特性,如表1所示。


表1:隔离特性

基于聚酰亚胺的数字隔离器与光耦合器相似,在典型工作电压时寿命更长。基于SiO2的隔离器对浪涌的防护能力相对较弱,不能用于医疗和其他应用。

各种薄膜的固有应力也不相同。聚酰亚胺薄膜的应力低于SiO2薄膜,可以根据需要增加厚度。SiO2薄膜的厚度有限,因而隔离能力也会受限;超过15μm时,应力可能会导致晶圆在加工过程中开裂,或者在使用期间分层。基于聚酰亚胺的数字隔离器可以使用厚达26μm的隔离层。

隔离器结构

数字隔离器使用或电容将数据以磁性方式或容性方式耦合到隔离栅的另一端,光耦合器则是使用LED发出的光。

如图1所示,电流脉冲通过一个线圈,形成一个很小的局部磁场,从而在另一个线圈生成感应电流。电流脉冲很短(1ns),因此平均电流很低。


图1. (a)带厚聚酰亚胺绝缘层的互感器,电流脉冲产生磁场,在另一个线圈中感生电流;(b)带薄SiO2绝缘层的电容,利用低电流电场将数据耦合到隔离栅的另一端。

互感器采用差分连接,提供高达100kV/μs的出色共模瞬变抗扰度(光耦合器通常约为15kV/μs)。磁性耦合对线圈间距离的敏感性也弱于容性耦合对板间距离的依赖性,因此,变压器线圈之间的绝缘层可以更厚,从而获得更高的隔离能力。结合聚酰亚胺薄膜的低应力特性,使用聚酰亚胺的变压器比使用SiO2的电容更容易实现高级隔离性能。

电容为单端连接,更容易受共模瞬变影响。虽然可以用差分电容对来弥补,但这会增大尺寸并提高成本。

除整体性能外,使用该变压器还有其他好处:它们支持集成隔离电源。ADI的isoPower技术集成带数据隔离功能的隔离式,可创建完整的隔离解决方案。毕竟,变压器是隔离式的关键元件。基于电容或基于LED的隔离器无法实现这类解决方案。

变压器相关文章:变压器原理


互感器相关文章:互感器原理


隔离器相关文章:隔离器原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭