虚拟仪器技术的进展及如何提升并行处理能力
产品功能的日趋集成化也是挑战之一,拿新上市的iPhone为例(见图2),它汇聚了多种功能,不仅用来通话,也可以用作MP3、PDA、数字相机等等,并且为了保持市场的竞争力,新的功能会被不断地加入。
图1:通讯行业并存着多样的协议
图2:产品功能日趋集成化
基于这些挑战,测试仪器也正在经历一个基本原则的变更——从功能固定的分立仪器向着灵活的基于软件的模块化仪器架构转变,这正是NI在20多年前提出的“虚拟仪器技术”的概念。利用虚拟仪器技术的特性,可以有效地解决上述的挑战:基于软件的自定义功能使得工程师们可以针对不同的协议开发对应的测试程序;而模块化的仪器架构则可以根据不同的功能测试选用不同的模块硬件,在同一个测试平台上灵活地实现测试系统的集成。
虚拟仪器技术目前已经被应用在测试测量和自动化的各大领域,协助越来越多的工程师来创建高性能、高扩展性的测试系统。与此同时,虚拟仪器技术本身也在不断发展和创新,纵观其20多年来的发展历程,可以看到,由于虚拟仪器技术是建立在商用技术的基础之上,因此它能够将新兴发展的科学技术都融合进来,使工程师能以最迅速和便捷的方式来享用,从而创建更高性能的测试系统。PC处理器技术的发展就是一个很好的例子:在1990年,用当时的PC(Intel 386/16)处理65000个点的FFT需要1100秒时间,而现在使用3.4GHz的P4计算机实现相同的FFT只需要约0.8秒。
这些蓬勃发展着的新兴技术也是动虚拟仪器技术发展的新动力,例如PCI Express总线技术可以让更多的原始数据以更高的速度传送给PC;而多核技术则可以实现真正的并行运算,从而直线提升系统的数据处理性能;可编程逻辑门阵列(FPGA)技术则允许工程师根据不同的测试要求通过软件重新定制硬件的功能。因此,可以预见的是,这些主流的商用技术将让虚拟仪器技术向许多之前只能用昂贵的专用设备的应用领域敞开了大门。另外,纵观目前主流的商用技术,可以很明显地看到,其发展的趋势是通过并行拓扑结构来实现更高的性能。下面是几种新兴技术实例:
PCI Express总线技术
传统仪器由于将数据处理和分析的过程放在了仪器硬件内部,因此它只能返回一个结果值,这种方式虽然方便,但是却无法满足之前已经叙述过的灵活性的要求。因此,一个更好的测试方式就是直接得到原始数据,再使用专业的分析工具来分析数据,这种方式可以允许工程师们对原始数据进行多次的分析,从而不再需要做多次测试来获得不同的分析结果,节省了时间和成本。
然而,随着采样率的不断提高和通道数的增多,现有的总线带宽能否进行原始数据的实时读取,这是实现很多新兴测试应用之前就需要解决的问题。
评论