关 闭

新闻中心

EEPW首页 > 安全与国防 > 设计应用 > 基于镜像奇异值分解的单样本人脸识别技术

基于镜像奇异值分解的单样本人脸识别技术

作者:时间:2010-10-23来源:网络收藏

  摘 要: 目前有许多正面人脸的识别方法,当有充分数量的时,能取得较好的识别效果,然而当处理单样本人脸识别问题时,效果则明显下降。针对这种情况,提出了基于的单样本人脸识别方法,通过采用的方法增加信息。实验表明,在对人脸图像进行识别时取得了较好的效果,并且在一定程度上克服了单样本条件下变化对识别效果的影响。

  自20世纪90年代以来,人脸识别技术已成为计算机视觉、模式识别和信息技术等领域研究的热点课题之一,并且在此基础上提出了主成分分析PCA(Principal Component Analysis)[1,2]、二维主成分分析2DPCA(Two-Dimensional Principal Component Analysis)[3]、双方向的二维主成分分析[4]和线性鉴别分析LDA(Linear Discriminant Analysis)[5]等有效的识别方法。但是,现有的正面人脸图像的识别方法,仅当有充分数量的有代表性的人脸图像样本时才能取得较好的识别效果。然而在一些特殊场合,如法律实施、海关护照验证和身份证验证等,每类(人)只能得到一幅图像,此时就只能用这些数目有限的图像去训练人脸识别系统。若用前面提到的那些方法处理这种数目有限的人脸识别系统,识别率会明显下降,甚至变得不再适用。参考文献[6]首先对原始人脸图像利用,然后运用分解得到的较大的几个奇异值对原始人脸图像近似重构,并且将重构人脸图像和原始图像一起作为训练样本,从而对原训练样本个数进行扩展,再对增加了训练样本后的样本集运用2DPCA方法进行特征抽取,该方法可取得较好的识别效果。但是由于人脸图像存在、表情等变化,而且这个变化越大,算法的识别误差也越大。基于此,本文提出了一种基于图像的镜像奇异值分解方法。该方法首先对人脸图像做镜像变换,然后对原始人脸图像和镜像图像分别做奇异值分解,接着用较大的几个奇异值分别对原人脸图像重构,将这些重构图像、原图像以及镜像图像一起作为训练样本运用(2D)2PCA方法对其进行特征抽取,最后使用基于最小欧氏距离的分类方法对样本集进行分类识别。由于考虑了人脸图像的旋转等变化,在ORL人脸数据库上的实验结果表明,该方法比参考文献[6]中的方法有更好的识别性能。

1 方法的思想与实现

  1.1 镜像人脸图像生成

  增加镜像图像可以部分消除由于头部的旋转对人脸识别造成的影响,而且人脸图像是基本对称的[7],则此时可以考虑将原始人脸图像A以其垂直中心轴由式(1)作镜像变换,从而对原始训练人脸图像的个数进行扩展。

  A1=A×M (1)

  其中,M为反对角线元素为1、其余元素为0的方阵。

  1.2 基于奇异值分解的人脸表示


  1.3 基于(2D)2PCA的特征提取


  训练时,将每张训练人脸图像Ak(k=1,2,…,M)分别向Z和X投影,得到训练样本的投影特征矩阵Ck(k=1,2,…,M);同时,在测试时,对于任一测试人脸图像A,首先使用式(5)得到特征矩阵C,然后使用基于最小欧氏距离的最近邻分类器对测试人脸图像进行分类识别。本文算法的结构流程图如图1所示。

2 实验结果及分析

  2.1 实验所用人脸库

  本实验所用人脸数据库为ORL人脸库,该人脸数据库由40人、每人分别由10幅大小均为112×92的256灰度级的正面人脸图像组成,这些图像是在不同时间、不同光照、不同表情和不同姿态下拍摄的。图2给出了ORL人脸数据库中的部分标准人脸图像及其镜像图像。


  2.2 实验方法及结果

  为了对各方法的识别效果进行对比,本文分别对单样本PCA算法、SVD+PCA算法、参考文献[6]中提出的SVD+2DPCA算法、SVD+(2D)2PCA以及本文提出的方法在ORL人脸数据库上进行10组实验,即分别将每个人的第1,2,3,...,10幅共40幅人脸图像作为训练样本,而其余的360幅图像作为测试样本进行分类识别,然后取其平均识别率,测试结果如表1所示。以下(2D)2PCA方法中行方向降维维数为10,即只对其列方向维数做变化。

 


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭