关 闭

新闻中心

EEPW首页 > 安全与国防 > 设计应用 > 背光亮度自处理式的环境光传感器系统设计

背光亮度自处理式的环境光传感器系统设计

作者:时间:2011-05-26来源:网络收藏
  引言

  环境光传感器(ALS)集成电路正越来越多地用于各种显示器和照明设备,以节省电能,改善用户体验。

  借助ALS解决方案,系统设计师可根据环境光强度,自动调节显示屏亮度。因为背光照明的耗电量在系统的总耗电量中占据很大的比例,实行动态的背光亮度控制,可节省大量的电能。

  此外,它还能够改善用户体验,让显示屏亮度根据环境光条件自行调整到最佳状态。

  系统实现需要三大部分:监测环境光强的、数据处理装置(通常是微控制器)、控制背光输入电流的执行器。

  环境

  图1是实施背光控制的系统示范框图。在这套组合中,是关键的组成部分,因为它要向系统的其他模块提供环境光强信息。

  光传感器必须具备将光信号转换成电信号的信号转换器(譬如光电二极管或CdS光敏电阻)和信号放大和/或调节装置以及模/数转换器()。

  图1 实施背光控制的系统框图

  图2所示为分立光电二极管电路,从图中可以看出,该电路需要一个或多个运算放大器:一个用于电流到电压的转换,可能还需要一级放大,提供附加增益。它还包括一些分支电路,用于供电,确保高度可靠的信号链。而在空间极其宝贵的应用中,所需元件的数量过多可能导致空间受限问题。

  图2 光电二极管电路分立设计

  这里还存在一个更细微的问题。具体而言,理想情况下,应确保环境光的测量模拟了人眼对光线的响应机制。这通常借助CIE提供的视觉亮度曲线(图3)。然而,光电二极管很少能够完全模拟这种响应机制,因为它们通常具有很高的红外(IR)灵敏度。在IR强度较大的光照条件(譬如白炽灯或日光)下,这种红外灵敏度会造成错误地判断光线强度。

  解决上述问题的方法之一是使用两个光电二极管:一个采用对可见光和红外光都很敏感的元件,另一个采用只对红外光敏感的元件。最终用前者的响应值减去后者的响应值,将红外干扰降至最小,获得准确的可见光响应。

  这种解决方案虽然有效,却增加了分立电路的占用空间。通常还很难、甚至不可能让两个分立的光电二极管配合得足够紧密,以实现消除红外干扰的目的。如果不配备精密放大器(譬如对数放大器),动态范围可能很小。换句话说,很难利用这种组合获得可重复的结果。

  图3 CIE曲线和典型的光电二极管

  高集成度解决方案不仅能够获得比人眼光学系统更真实的光强数据,还能够节省大量空间。MAX9635、等环境光传感器,可将所有信号调节和模/数转换器集成在一个小封装(2mm x 2mm UTDFN封装)内,从而在空间受限应用中有效节省电路板面积。

  图4提供了的功能框图,采用I2C通信协议,使其与微控制器的连接方式更简单,数据传输速度更快。除此之外,该解决方案的高集成特性使其能够置于柔性电缆,安装在离主电路板距离合适的位置。

 图4 功能框图

  调节显示屏亮度

  该控制方案的第二部分是调节显示屏的背光亮度。这可通过多种方式实现,具体取决于设备中的显示屏模块。

  有两种最简单的方式:

  1.借助脉冲宽度调制()方案的直接调节方式,

  2.采用显示屏控制器的间接调节方式。

  许多显示屏模块如今都配有一个集成控制器,用户可以通过向控制器发送串行命令,直接设置背光亮度。

  如果显示屏模块未配备集成控制器,还可安装一个简单的背光控制执行器,控制显示屏后面用于背光照明的白光灯的输入电流。实现这种控制的一种简单办法是:直接给串联一个场效应晶体管(FET),使用信号快速打开、关闭FET (图5)。

  然而,也可以利用单一芯片(用于控制的MAX1698升压转换器)准确、可靠地调节(图6)。

  图5 简单的PMW控制电路

  图6 基于MAX1698的LED亮度调节器

  建立连接

  最后一步就是在传感器和执行器之间建立连接,通过微控制器实现。有人可能首先要问:“环境光强如何映射到背光亮度?”事实上,有些文献专门介绍了相关方案。其中一种映射方式是,Microsoft针对运行Windows 7操作系统的计算机提出的。图7所示曲线是由Microsoft提供的,它可以将环境光强度映射到显示屏亮度(以全部亮度的百分比表示)。

  图7 将环境光强映射为最佳显示屏亮度的曲线示例

  这种特殊曲线可以用以下函数表示:

  如果设备采用的是已集成亮度控制功能的LCD控制芯片,就可通过向芯片发送指令,轻松设置背光亮度。如果设备采用的是直接控制亮度,则要考虑如何将比例信号映射至显示屏亮度。

  在MAX1698示例中,根据其产品说明书的介绍,可以将驱动电流映射为电压。通过这个示例,我们可以假设LED电流强度几乎与其电流呈线性关系。这样,我们就可以在上述等式中乘上一个系数,计算出PWM所映射的有效电压,该电压再被映射至LED电流,最后转化成显示屏亮度。

  方案实施

  最好不要从一个亮度级直接跳转到另一个亮度级,而是平滑上调和下调背光亮度,确保不同亮度等级之间无缝过渡。为了达到这一目的,最好采用带有固定或不同亮度步长、可逐步调节亮度的定时中断,也可采用带有可控制LED输入电流的PWM值的定时中断,或者是能够发送到显示屏控制器的串行指令的定时中断。图8提供了这种算法的一个示例。

  图8 步进式亮度调节的算法示例

  另一个问题是,系统响应环境光强变化的速度。我们应尽量避免过快地改变亮度等级。这是因为光强的瞬间变化(譬如一扇窗户打开或瞬间有一束光扫过)可能导致背光亮度发生不必要的变化,这往往会造成用户感觉不适。并且,较长的响应时间还有助于减少微控制器对光传感器的检测次数,从而可以释放一定的微控制器资源。

  最初级的方法就是每隔一两秒钟检查一次光传感器,然后相应地调整背光亮度。更好的方法是,只有光线强度偏离特定范围一定时间后,才对背光亮度进行调节。譬如,如果正常光强是200lux,我们可能只会在光强降到180lux以下或升至220lux以上,而且持续时间超过数秒的情况下才调节亮度。幸运的是,MAX9635和MAX44009都集成了中断引脚和阈值寄存器,可轻松实现这个目的。



评论


相关推荐

技术专区

关闭