混合电动车用MH—Ni电源系统若干问题探讨
2.1 电池的容量
在应用过程中,电池容量的一致性是无法进行检测的,主要应考核初始状态时(即系统电池组装配前)各电池容量的一致性。
在前面SOC情况的讨论中,可以知道,SOC的最大偏差可以允许13%,这也是电池容量差别的最大允许要求,即低于此偏差即不影响系统的正常应用。
在实际生产中,目前大部分厂家都控制在5%,这已经能够完全满足电动车的要求。
2.2 电池的电压
电池电压的一致性与SOC有较大关系。首先要确定电压一致性的判别方法。在低于20%SOC下,电池的电压差别是比较明显的。如0~1.2V,均可视为SOC=O%。20%的SOC,电压在1.25V左右,与0%SOC电压差别至少在50mV左右(此时10组合电池模块可能达到500mV以上)。而在20%~80%SOC,电压差别很小,电压在1.25一1.35V范围内。此电压指电池的开路电压,而且一般开路时间比较长(4h以上)。随着开路时间的增加,在20%~80%SOC范围内的电压差别会更小,如自放电搁置28d,其电压差别可能仅有30mV左右。在80%SOC以上,电压也会有比较大的差别。因此,依据开路电压来判断,无法制定统一的标准。从一致性的目的来说,主要是不影响系统的正常应用,因此应考虑电池在使用过程中的一致性。
从电池的充放电曲线我们可以知道,在低予20%SOC和高于80%SOC时,电池的电压发生急剧变化,因此在超出此范围考察一致性也无很大意义。
实际使用的SOC范围在20%~80%之间,电压比较平稳,主要应考察这一区间各电池电压的一致性。从实际生产经验考虑,在此段充电或放电时,各电池的电压差别不应超过5mV(无论何SOC)。
2.3 内阻的一致性
内阻分为欧姆内阻(标准1kHz下的交流内阻)和直流内阻(大电流短时间充电或放电测得)。应用于HEV的MH—Ni电池内阻相对较小。例如40Ah电池,其电池内阻正常都在1~1.2mQ,但其检测精确度与测量设备有较大关系。某些设备、仪器只要操作上稍有偏差,带来的测量误差就比较大,正常就有20%左右的误差。一般来说,只要电池合格,性能正常,在此偏差范围内电池性能不会差别较大。但超出此范围,电池性能可能会有差异,如电池制作过程中的虚焊等,虽然对电池容量无较大影响,但会对功率性能有影响,通过欧姆内阻的检测可以分辨出来。因此内阻偏差一般控制在±20%的范围内为宜。
直流内阻更能反映电池应用过程中内阻的一致性。但在生产、应用过程中,是不可能对每只电池进行直流内阻检测的,不适宜作为考核的依据。
具体涉及到整个电源系统,另一个考虑的问题是电池之间的连接电阻,这一部分一定要控制一致性。因为此部分电阻稍大,在使用过程中就会发热,从而带来一系列的问题。但此部分内阻本身很小,只有零点几个毫欧,不容易直接检测,可以在充放电过程中检测其上的电压降来控制,其一致性可以根据电池的连接方法、工艺等加以控制。
2.4 温度的均匀性
温度是对MH—Ni电池性能影响最大的因素之一。温度不均匀不仅影响到电池使用过程中容量的一致性和对SOC的判别,更重要的是由于温度不均匀,会使温度高的部分电池衰减速度加快,从而影响整个系统的使用寿命。温度的一致性主要是针对考察系统冷却结构设计而言,指电源系统在使用过程中内部各电池所处周围的环境温度的差异程度。
对MH—Ni电池在不同温度下的放电功率、容量以及充电效率等研究表明,在O~30℃,温度每变化5℃,电池功率变化4%~5%(随温度升高而升高),在O℃以下和30℃以上,温度每变化5℃,功率变化在2%~3%;在0℃以上,环境温度对放电容量的影响不大,但低于此温度,每差10℃,放电容量相差30%~50%;对于充电效率,在30—50℃(一般电动车使用最高温度限制在50℃),温度每升高5℃,充电效率(库仑效率)会下降5%左右。
随着温度的升高,合金腐蚀速度加快。松下公司的研究表明,当环境温度分别从60℃一70℃寸80℃上升时,贮氢合金的寿命系数分别从1.59。79_0.40递减。即以60℃为起点,温度每上升10℃,合金寿命缩短一半。在混合电动车应用过程中,最高温度一般控制不超过55℃。
MH—Ni电池使用过程巾的问题主要是高温问题,一方面要控制最高应用温度,避免出现热失控等问题;另一方面,按照一卜面生产控制电池容量差别不超过5%及上述分析,使用过程中电池包内各电池的环境温度差异最高不应超过5℃。日本丰田Prius车的电池包温度差异控制在不超过5℃(在较低环境温度下可以达到10℃),本田Insi曲t车则相对较低,不超过3℃。
评论