新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于单目视觉的智能车辆视觉导航系统设计

基于单目视觉的智能车辆视觉导航系统设计

作者:时间:2012-02-22来源:网络收藏

0 引言

基于计算机视觉的高速公路防撞系统是当前智能交通管理系统研究的热点之一。如何在多变的环境下快速准确地从视频图像里检测到车道和前方车辆是实现这类系统面临的最关键问题。近20年来,国内外很多研究人员对这个问题进行了大量研究,提出了多种多样的实用算法并成功开发了一些视觉系统。这些系统所采用的算法基本上可以分为基于双目视觉的方法、基于运动的方法、基于外形的方法和基于知识的方法。基于双目立体视觉的方法计算量大,需要特殊硬件支持;基于运动的方法,无法检测静止目标且实时性差;基于外形的方法,因建立有效的培训样本仍然是需要研究的问题;基于知识的方法,在障碍物数量较少时效率较高,但复杂环境下错误率有所增加。

针对常规算法的不足,本文设计了一种精度高,稳定性好的基于单目视觉的车载追尾预警系统。它利用一种新的边缘检测算法识别前方道路,然后利用阴影检测与跟踪相结合的方法识别前方车辆,接下来根据前后车距判断其威胁等级,最终向驾驶员提供相应的声光报警信号。

1 系统工作原理

系统硬件部分包括MCC-4060型CCD摄像机、VT-121视频采集卡、GPS、PC-104工控机和显示终端。GPS通过串口向工控机发送本车车速信息,安装在车内挡风玻璃后的CCD摄像机将图像帧通过视频采集卡送入工控机,经过软件的处理分析后,在显示终端上标注出前车障碍物和道路标线,同时根据车速、间距等判断危险等级,发出相应的声光报警信号;

系统的软件部分包括、道路跟踪、车辆检测、车辆跟踪、测距、决策和报警等模块。当车速达到60km/h时,系统开始处理实时采集到的图像序列。对于每一帧图像,首先检测并跟踪图像中的车道白线,然后在车道确定的感兴趣区域内检测车辆。如果存在疑似障碍车辆,则启动车辆跟踪,利用跟踪信息进一步排除虚警。在实现对障碍车辆稳定跟踪后,估算出两车间距和相对运动速度,判定其威胁等级,并发出相应的报警信号。

2 系统关键技术

2.1

目前,车道线检测算法主要适用于光照充足的环境下。由于车道线与路面之间对比度大,因此很容易利用各种常规边缘检测算子获得清晰的车道轮廓信息,然后选取合适的阈值对图像进行二值化处理,最后采用Hough变换识别车道线。然而在复杂光照环境下,图像会受到各种光线直射和物体多次反射形成杂散光的干扰,图像光强不能反映车道本身突变性质,导致无法正确检测出车道。

本系统采用了一种利用得到车道标线与路面反射率差,进而进行非线性边缘检测,再进行Hough变换的车道检测算法。此算法可以有效解决在复杂光照条件下的车道检测,也可以用于夜间的车道检测。

另外,目前车道线的跟踪研究主要采用固定区域法或者Kalman滤波法,根据前一帧车道线检测的结果来划分感兴趣区域,以实时跟踪车道线。然而,固定区域法对2帧图像的相关性依赖大,划分感兴趣区域大,实时性差;而Kalman滤波法划分感兴趣区域小,容易产生检测误差,而造成跟踪误差累积,跟踪正确率不高。因此,本系统在跟踪车道线时采用了一种融合固定区域法和KaIman滤波法划分感兴趣区域的新方法。

一般来说,只将车道边界线交点(即灭点)以下、2车道线之间的区域作为感兴趣区域,考虑到跨道行驶的车辆依然对本车有威胁,算法把两车道线分别向两侧平移40个像素,使感兴趣区域扩展到可以覆盖跨道车辆的范围。


上一页 1 2 3 下一页

评论


技术专区

关闭