新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 总线式车身控制系统的规则化建模方法

总线式车身控制系统的规则化建模方法

作者:时间:2012-11-16来源:网络收藏
一、前言

汽车车身上安装的电子器件和设备不断增多,例如:电动座椅、电动门窗、可开式车顶、可调式转向盘、空调系统等;还有各种车灯、雨刮器、电动门锁、除霜器、后视镜、喇叭、各种指示灯及各种数字式仪表(转速表、车速表、水温表、油量表)等。车用电子控制系统、传感器、执行机构和电线的数量也不断增加。汽车的功能是实现对车身上各种器件方便灵活地综合控制。

在传统的中,采用线束通过点对点的方式实现各种电子器件之间的相互连接和对其进行直接控制。但是随着器件的增加,使汽车内部的线束日益复杂、车内可利用空间变得越来越小,且由于线路复杂、故障率增加,造成汽车的制造成本提高,设计和维护难度也不断增加,可靠性却大大降低。如何对进行改造,解决上述遇到的问题,受到越来越多国内外汽车业内人士的关注。

二、车身控制系统

传统的车身控制系统中的线束不仅用来传递信号,而且借助于线束及继电器和开关的触点来实现各种器件之间的控制逻辑。由于各种器件分散在车身的各个部位,因此车身控制系统更适合采用分布式控制系统来构建。

新型的车身控制系统采用1根总线来代替繁杂的点对点的线束,引入软硬件相结合的智能控制节点来构建车身控制系统。其方法是把各种器件连接到分布于车身中的多个智能控制节点上,每个智能控制节点都是拥有一定计算和存储资源的嵌入式处理单元。智能控制节点通过总线连接在一起,通过智能控制节点中的软件来实现对各种器件的综合控制,也即用软件逻辑取代传统车身控制系统中的硬件逻辑,具有更好的灵活性和易维护性。

CAN是被广泛应用于汽车中的一种总线技术,采用CAN总线技术构建车身控制系统的网络平台,以串行结构的总线代替并行结构的线束,实现分布式多路传输,可方便地实现各部件之间的信息交互和共享;同时集成实时诊断、测试和故障报警等多种功能;并能通过信息屏直接给出故障位置,便于维护;任意增减功能而不会影响其它部分的工作。采用CAN总线技术构建车身控制系统的网络平台是未来的发展方向。

但如何设计和开发车身控制系统软件,建立便于使用的、规范化的建模和设计方法及相应的开发平台是需要解决的关键问题。

三、自动机模型建模分析

车身控制系统的状态体现为各种器件的状态,器件状态的改变是由用户操作、传感器检测等触发的离散事件驱动,从而导致系统状态动态演化。车身控制系统是个典型的离散事件控制系统,通常采用有限自动机模型进行建模。典型的有限自动机表示为一个五元组

A=(S,E,η,y0,Sm)(1)

式中S为状态集,E为事件集,η为状态转移函数,y0为初始状态,Sm为终止状态集。

S是个非空集合,y0∈S,SmAS,并且η:S×E→S。其含义是:若e∈E,s1∈S,s2∈S,当事件e发生时,系统的状态由s1转变为s2,η将S与E的乘积映射到S。

用有限自动机模型对车身控制系统进行建模,首先要确定系统的S,其次要给出系统的η。车身控制系统中涉及的器件多,并且器件的状态数目也较多,如果直接对整个系统进行建模,系统的状态空间S将会很庞大。

假设器件个数为20,每个器件的状态数为3,车身控制系统的状态由所有器件的状态决定,则系统的状态为所有器件状态的组合,对应的状态数为320,状态空间非常庞大。再考虑η可用状态转移矩阵、状态转移表或状态转移图的形式表示,三者具有等价性,可互相转换。以状态转移矩阵为例,用行表示状态机所处的当前状态,列表示将要到达的下一个状态,行列交叉处表示触发事件,则得到的是320×320的矩阵,状态空间更加庞大。

上一页 1 2 3 下一页

评论


技术专区

关闭