基于PID算法的船舶航迹自动控制
1 引言
当船舶在大海中航行时,通常利用自动舵系统改变舵角从而使船舶沿着期望的航迹自动航行[1]。自动舵系统是根据航迹偏差信息自动完成操纵舵机的装置,是在随动操舵基础上发展起来的一种自动控制操舵方式。它可以代替人工操舵,保持船舶在设定航向或预定航迹上航行,实现航向保持、航向改变以及航迹保持的功能。自动舵不仅可以减轻舵手的劳动强度,而且在远航时,在相同的航行条件下,可以减少偏航次数,减小航向偏差,从而提高航速,缩短航行时间,节省燃料,提高航行的经济效益[2,3]。
2 视线扫描导航系统设计
2.1 航迹控制方案设计
航迹控制分为直接航迹控制和间接航迹控制。直接航迹控制是依据航迹偏差直接改变舵角,从而使船舶的实际航迹能够跟踪期望航迹。间接航迹控制是通过航迹偏差计算期望的航向信息,再利用期望的航向与实际船舶航向的偏差改变舵角,从而实现航迹控制。
本文采用间接航迹控制方式,如图1所示,内环为船的舵角控制,用于操纵舵机使实际舵角与规划舵角一致,从而使船舶航向发生改变,中环为船的航向控制,是将GPS测量的当前船舶航向与航向规划器产生的期望航向相比较,航向误差送入航向PID控制器,从而产生期望的舵角变化值,外环为船舶的航迹控制,通过航迹跟踪算法计算可以消除航迹偏差的规划航向。
2.2 航迹跟踪方式
船舶在航行过程中受到风、浪及海流等因素的影响,出现航迹偏差问题。本文通过GPS系统获取的船舶实际位置信息对航迹偏差进行解算,以获取可消除航迹偏差的航向修正角度。图2所示为航迹跟踪方式原理图。人工驾驶时,船舶驾驶人员会在一定的视线区域实时观察船舶前方有无障碍物和是否偏离期望的航迹。因此在船舶航迹自动控制时,模拟人工驾驶设定视线扫描区域,当航迹偏差在一定范围时,视线扫描区域与预定航迹相交于航迹瞄准点P。当前船位与航迹瞄准点P形成的航迹瞄准方向即为经视线导航策略导出的规划航向角度。利用GPS系统反馈的船舶位置、航向信息以及设定的航迹信息可计算出当前的规划航向角度从而解算出可消除航迹偏差的规划航向角度。解算具体过程如下所示。
计划航迹向角度可通过计划航迹点坐标解算获得:
其中为从赤道到纬度的纬线之间的距离,即
将A、B点的纬度坐标代入到式(3)计算出数值,再利用(2)式可解算出计划航迹向角度由于航迹瞄准点P在计划航向AB上,所以用AP点、PB点计算出的航向角度与计划航向相同。
利用式(1)、(2)即可计算出航迹瞄准点P位置坐标。由此可利用式(1)得到当前船位点与瞄准点形成的规划航向角度值。
经视线导引策略解算出的规划航向角将传递到航向控制系统中。通过对船舶的航向控制使船舶按规划航向角度方向行驶,从而使船舶相对于预定航线的偏差逐渐趋向零。该跟踪规律可以使船舶在逼近预定航线缩短航迹偏差的同时,使得船舶航向角度趋近于预定航线的航向角。
pid控制相关文章:pid控制原理
pid控制器相关文章:pid控制器原理
评论