ADI的iCoupler技术实现电磁炉和用户接口的安全隔离
虽然目前电感技术得到了良好的发展和验证,但是在设计电磁炉应用电路时,设计人员必须掌握不同范围的物理原理和设计技术。虽然电磁炉实现的原理相对简单,但是其技术却涉及众多不同的领域,包括模拟和数字信号处理、电气保护和隔离。
例如,安全标准规定用户接口和电源之间的隔离,其中需要实现三个方面的隔离:
·控制逻辑所需的低压电源的隔离
·绝缘栅极双极型晶体管(IGBT)功率级与其控制信号之间的隔离
·用户控制和系统控制器之间的隔离
一个安全的系统必须能够满足至少上述两个条件。本文将讨论几种创新的解决方案,它们能够实现IGBT门级驱动器与用户接口之间的隔离。
系统说明
电感元件与变压器类似,能够产生磁场。在将金属锅置于磁场中时,则会产生涡电流,电能转换为热能,通过金属的热传导来加热食物。由电学的观点来看,电感元件驱动有损LC谐振电路,损耗产生了热量。图1所示电感加热系统框图。
图1 电感加热系统
变压器是主传感器,它与电磁炉磁板串联连接,监测流过磁板的电流值,以便于针对用户选择的烹饪选项保持适当的电流值。在必要时降低电流,以避免出现过流条件,这可以防止损坏功率级,即电磁炉的磁板和IGBT。
由于磁板、锅和变压器的电感和电容构成了谐振LC电路,因此某些人可能认为设定L和C的值即能够确定感应频率。但是,电感和电容值以及由此导致的谐振频率取决于用户使用的锅的尺寸、形状和材料。因此,通过用户接口选择的不同的加热等级不能由固定频率设定。一种更有效的方法是通过电流测量确定的功耗,以此设定加热的等级。微控制器通过反馈回路调节电流,使其对应于用户选择的加热等级。微控制器调节脉宽调制(PWM)波形的频率,以适应锅的特征。电磁炉的设计人员应事先了解每个加热等级所对应的电流大小,继而只需简单地对微控制器编程以调节PWM频率,提供适当的电流。
驱动IGBT的PWM信号的典型频率范围约20 kHz~100 kHz。相比于MOSFET,IGBT的关断特性较慢,其开关频率仅为数十千赫。微控制器提供的PWM信号的占空比是固定的(如50%),通过用户选择的加热等级要求的功率来调节该PWM信号的频率。
由于在大电流电感电路中可能会产生大电压,因此在系统中的关键位置提供电气隔离是十分重要的。特别是电磁炉的功率级与微控制器和其它数字电路隔离。一种隔离方法是使用隔离IGBT驱动器。与传统的隔离解决方案相比,基于ADI公司创新的iCoupler®技术的低成本隔离门级驱动器串联电路具有很多优点。
电流隔离是一种用于防止电流在两个连通的电路之间直接流动的技术。使用隔离的主要原因有两个,第一个原因是在人员和设备暴露于大电压或电流浪涌时,对他们进行保护。第二个原因是在电路互连牵涉到不同的地电位时,避免地回路和破坏性的地电流。在这两种情况中,隔离技术可以防止电流流动,但是允许在两个电路之间传递数据或功率。
电磁炉相关文章:电磁炉原理
评论