人脸识别技术的应用背景及研究现状
人脸识别技术的应用背景及研究现状
1.人脸识别技术的应用
随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年中得到了飞速的发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。当前的生物特征识别技术主要包括有:指纹识别,视网膜识别,虹膜识别,步态识别,静脉识别,人脸识别等。与其他识别方法相比,人脸识别由于具有直接,友好,方便的特点,使用者无任何心理障碍,易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。当前的人脸识别技术主要被应用到了以下几个方面:
(1)刑侦破案公安部门在档案系统里存储有嫌疑犯的照片,当作案现场或通过其他途径获得某一嫌疑犯的照片或其面部特征的描述之后,可以从数据库中迅速查找确认,大大提高了刑侦破案的准确性和效率。
(2)证件验证在许多场合(如海口,机场,机密部门等)证件验证是检验某人身份的一种常用手段,而身份证,驾驶证等很多其他证件上都有照片,使用人脸识别技术,就可以由机器完成验证识别工作,从而实现自动化智能管理。
(3)视频监控在许多银行,公司,公共场所等处都设有24小时的视频监控。当有异常情况或有陌生人闯入时,需要实时跟踪,监控,识别和报警等。这需要对采集到的图像进行具体分析,且要用到人脸的检测,跟踪和识别技术。
(4)入口控制入口控制的范围很广,既包括了在楼宇,住宅等入口处的安全检查,也包括了在进入计算机系统或情报系统前的身份验证。
(5)表情分析根据人脸图像中的面部变化特征,识别和分析人的情感状态,如高兴,生气等。此外,人脸识别技术还在医学,档案管理,人脸动画,人脸建模,视频会议等方面也有着巨大的应用前景。
2.人脸识别技术在国外的研究现状
当前很多国家展开了有关人脸识别的研究,主要有美国,欧洲国家,日本等,著名的研究机构有美国MIT的Media lab,AI lab,CMU的Human-Computer Interface Institute,Microsoft Research,英国的Department of Engineering in University of Cambridge等。综合有关文献,目前的方法主要集中在以下几个方面:
(1)模板匹配
主要有两种方法,固定模板和变形模板。固定模板的方法是首先设计一个或几个参考模板,然后计算测试样本与参考模板之间的某种度量,以是否大于阈值来判断测试样本是否人脸。这种方法比较简单,在早期的系统中采用得比较多。但是由于人脸特征的变化很大,很难得到有效的模板来表示人脸的共性。变形模板在原理上与固定模板相同,但其中包含一些非固定的元素,一种方法是手工构造参数化的曲线和曲面以表征人脸中的某些非固定特征,如眼睛,鼻子和嘴唇等。另一种方法是系统自动生成自适应的曲线或曲面,以构成变形人脸模板。检测方法是:将模板与测试图像进行弹性匹配,并加入惩罚机制,利用某种能量函数表示匹配程度。
(2)示例学习
示例学习的基本思想是从某一概念的已给正例和反例的集合中归纳产生出接受所有正例同时排斥所有反例的该概念的一般规则。将人脸样本和非人脸样本送入学习机中,产生出判别规则,从而用于作为判断输入的测试图像是否属于人脸的主要判别依据。为了获得较高的精度,学习过程需要大量的样本,另外样本数据本身是高维矢量,因此,研究通用而有效的学习算法的关键是精确的区分性和数据维数的降低。
将多个表示人脸模式的线性空间进行组合,是示例学习的另一条途径。采用了Kohonen自组织映射网络对人脸样本和非人脸样本进行聚类,对每一类样本进行Fisher线性判别,得到每一类的判别平面,从而构成图像子空间,并运用高斯模型描述每个子空间,估计出类条件概率密度。这样,对于测试图像,计算其属于各个子空间的概率,分类决策为概率最大的类是它所属的类,从而判断测试图像是否为人脸。
矢量控制相关文章:矢量控制原理
评论