影响数控飞剪机动态剪切精度的诸因素实验研究
(2)齿条运行速度=13米的实验
相关参数跟随齿数=10,加减速模式:直线加减速。
加减速时间360—400ms,
剪切结果:多数长度=1015-1022,偏长4-10mm。
调节伺服电机加减速时间,有效果,但是调到最好状态也是偏长4-10mm。在同一组参数下,长短不一。即使有几组切得长度一样。也是偏长。
(3)齿条运行速度=8米的实验
相关参数跟随齿数=7,加减速模式:直线加减速。
加减速时间300--360ms
剪切结果:多数长度=1015-1022,偏长4-10mm。一组中也有1-2根偏短5mm。
4.2对实验结果分析
使用各种参数对移动平台的动态冲切进行了实验,但冲切效果仍然很差。在同一组参数下,冲切齿条长度长短不一。实验结果如表1
表1动态冲切实验记录
齿条速度=13000mm/分 | 跟随齿数=10 | ||
标准长度=1012mm | 延迟时间约125ms | 计算长度误差 | |
加速时间#2004 (ms) | 冲切长度 | 加速段行程差 | |
500 | 1035 | 54.5+27=81 | 81-63=18 |
400 | 1022 | 43.6+ 27=70.6 | 70.6-63=8 |
360 | 1017 | 39.24+27=66.24 | 66-63=3 |
350 | 1016—1015 | 38.15+27=65.15 | 65.13-63=2 |
340 | 1016 | 37+27=64 | 64-63=1 |
根据以上数据 延迟行程约29mm | |||
从表1的实验数据看,调节加速时间有效果,当加速时间逐渐变小时,剪切齿条长度逐渐逼近标准长度,但是无法达到标准值。而且一组齿条长短不一。在影响冲切精度的诸因素中,已经排除了干扰的影响和漏计脉冲的影响(降低了运行速度),而且加速时间,同步跟随时间,清零时间都已经反复调节并处于受控状态。但冲切长短数据结果是如此分散。那么必定有一“不受控因素”或“随机因素”在起作用。
5寻找关键因素
5.1延迟时间的影响
再一次分析“移动平台的动态冲切模式”并仔细观察实际的冲切过程,发现移动平台的启动存在延迟------即从PLC发出启动信号到移动平台实际启动,有120ms左右的延迟时间。
齿条机的控制系统由“PLC+NC”构成,在PLC---NC之间信号传递过程及时间如下:
⑴PLC负责接收计数信号,经过运算后发出移动平台启动信号,“PLC的扫描周期+输出延迟”约20ms。
⑵启动信号被送入数控系统并处理,这段时间约60ms。
⑶数控控制器发出伺服轴启动信号经过总线送入“伺服驱动器。”这段时间约40ms
因此,总延迟时间约100-120ms。这段时间是由系统硬件性能所决定,不受控制。
而在这段延迟时间内,(当齿条以13000mm/分速度运行)齿条已经运动了29mm左右。
在图2所示的动态冲切模式中,0-A阶段就是延迟阶段。
而行程差计算公式必须修正为:
在齿条机控制系统中,由于延迟时间不是一个稳定的值,所以其大大影响了齿条冲切精度。
5.2整改措施及效果
为了减少延迟时间的影响,采取了如下措施:
⑴更换移动平台驱动系统,由PLC直接控制该驱动系统。减少中间信号的传递环节。
⑵降低齿条运行速度。
经过以上处理后,移动平台的动态剪切精度得到保证。
6.结束语:
动态冲切不同于静态冲切。在静态冲切中100ms的延迟时间不会对冲切精度有任何影响,而在动态冲切中,延迟时间就成为影响剪切精度的主要因素。保持移动平台与齿条的同步运行也是动态剪切的基础。
伺服电机相关文章:伺服电机工作原理
评论