新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 高性能低功耗三相BLDC电机控制系统的设计

高性能低功耗三相BLDC电机控制系统的设计

作者:时间:2013-10-14来源:网络收藏

通常使用三个相位(绕组),每个相位具有120度的导通间隔(参见图7)。

本文引用地址:http://www.amcfsurvey.com/article/237757.htm


src="http://editerupload.eepw.com.cn/fetch/20140414/237757_1_0.jpg"

图7:六步换向

由于为双向电流,每个相位按照每个导通间隔有两个步骤。这是一种镀锡六步换向。例如,换向相序可为AB-AC-BC-BA-CA-CB。每个导电阶段标记一个步骤,任何时候只能由两个绕组导通电流,第三个绕组悬空。未励磁绕组可用作反馈控制,构成无传感器控制算法特征的基础。

为了保持在转子之前的定子内部的磁场,并产生最佳扭矩,必须在精确的转子位置完成从一个扇形区到另一个的过渡。通过每 60 度转向的开关电路获得最大扭矩。所有开关控制算法均包含在MCU中。可通过MOSFET驱动器控制开关电路。MOSFET驱动器包含适当响应时间(如 维持延迟及上升和下降时间)和驱动能力(包括转换MOSFET/IGBT “开”或“关”状态所需的门驱动电压和电流同步)。

转子位置对于确定电机绕组换向所需的正确力矩非常重要。在精度要求较高的应用中,可使用霍尔传感器或转速计计算转子的位置速度和转矩。在首要考虑成本的应用中,逆电动势 (EMF) 可用于计算位置、速度和转矩。

逆电动势是指永久磁铁在定子绕组中产生的电压。电机转子旋转时会出现这种情况。共有三个可用于控制和反馈信号的主要逆电动势特征。第一,适用于电机速度的逆电动势等级。因此,设计师使用工作电压至少为标准电压的2倍的MOSFET驱动器。第二,逆电动势信号的斜率随速度增加而增加。第三亦即最后者,如图8所示的“交叉事件”中逆电动势信号是对称的。精确检测交叉事件是执行逆电动势算法的关键。逆电动势模拟信号可使用高压运算放大器和模拟数字转换器(广泛应用于最现代的)按每个混合信号电路转化至MCU。每个至少需要一个ADC。

src="http://editerupload.eepw.com.cn/fetch/20140414/237757_1_1.jpg"

图8:交叉事件

使用无传感器控制时,启用顺序至关重要,这是由于MCU最初不确定转子的初始位置。首先启动电机,激励两个绕组,同时从逆电动势反馈回路进行几次测量,直到确定了精确位置。

通常可使用具有MUC的闭环控制系统操作电机。MCU可执行伺服回路控制、计算、纠正、PID控制及传感器管理(如逆电动势、霍尔传感器或转速计)(参见图9)。这些数字控制器通常为8位或更高,需要EEPROM储存固件,从而获得设置所需电机速度、方向及维持电机稳定性所需的算法。通常,MCU 可提供允许无传感器电机

控制构架的ADC。该构架可节省宝贵成本和电路板空间。MCU兼具较强可构造性和灵活性,可满足优化应用算法之所需。模拟IC可为MUC提供高效电源、电压调整、电压基准,能够驱动MOSFET或IGBT及故障保护。采用这两种技术均可高效地操作三项电机,且与感应电机和有刷电机价格相当。

src="http://editerupload.eepw.com.cn/fetch/20140414/237757_1_2.jpg"

图9:闭环控制

总结

在许多市场和应用中,向高效BLDC电机过渡的趋势越来越普遍。这是由于BLDC电机用于以下优势:

· 高效(达75%,交流电机仅为40%)

· 热量更少

· 更高可靠性(无电触头)

· 可在危险环境下操作更加安全(无灰尘产生,而有刷电机则有)。

通过在关键任务子系统中使用 BLDC 电机,可减少重量。这意味着在车辆中应用节约更多燃油。由于 BLDC 电机完全采用电子整流,因此更易于高速地控制电机的扭矩和 RPM。全球许多国家面临着电网不足引起的有效功率不足。可以肯定的是,为了更有效地使用 BLDC电机,少数国家正在提供补贴或正准备提供补贴。BLDC 部署是在避免对我们的生活方式造成不利影响的前提下促进绿色环保,节约全球宝贵资源的趋势之一。

霍尔传感器相关文章:霍尔传感器工作原理


霍尔传感器相关文章:霍尔传感器原理


评论


相关推荐

技术专区

关闭