新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于DSP的光伏电池最大功率跟踪算法的研究

基于DSP的光伏电池最大功率跟踪算法的研究

作者:时间:2010-06-11来源:网络收藏

  1 引言

  传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球还有20亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展。太阳能以其独有的优势而成为人们重视的焦点,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。因此,研究并网逆变器的设计有着广阔的前景和意义。限制光伏系统的主要因素有两点:⑴初期投资比较大;⑵太阳能的转换效率低。目前我们通常使用的效率在15%左右,即使世界上最先进技术的在特殊的实验条件下也只能达到40%,因此光伏电池跟踪就变得十分重要,所以长期以来都是学术界研究的热点。

  2 光伏电池阵列特性分析

  2.1 光伏电池的数学模型

  光伏电池是利用半导体材料的光伏效应制作而成的。所谓光伏效应是指半导体材料吸收光能,由光子激发出电子—空穴对,经过分离而产生电动势的现象。光伏电池的I-V特性随日照强度S(W/㎡)和电池温度t(℃)而变化,即I=f(V,S,t)。根据电子学理论,当负载为纯电阻时,光伏电池的实际等效电路如图1所示。

光伏电池等效电路

图1 光伏电池等效电路

  对应的I-V函数如下:

公式  (1)

  其中公式-二极管结电流(A),IL-光伏电流(A),I0-反向饱和电流(对于光伏单元而言,其数量级为10-4A),q-电子电荷(1.6×10-19C),K-玻耳兹曼常数(1.38×10-23J/K),T-绝对温度(T=t+273K),A-二极管品质因子(当T=330K时,约为2.80±0.152),Rs-串联电阻(为低阻值,小于1Ω),Rsh-并联电阻(为高阻值,数量级为KΩ)[1]。

  2.2 光伏电池输出的

  当光伏阵列输出电压比较小时,随着电压的变化,输出电流变化很小,光伏阵列类似为一个恒流源;当电压超过一定的临界值继续上升时,电流急剧下降,此时的光伏阵列类似为一个恒压源[2]。光伏阵列的输出功率则随着输出电压的升高有一个输出功率最大点。跟踪器的作用是在温度和辐射强度都变化的环境里,通过改变光伏阵列所带的等效负载,调节光伏阵列的工作点,使光伏阵列工作在输出功率最大点。

光伏电池电压/电流曲线和电压/功率曲线

图2 光伏电池电压/电流曲线和电压/功率曲线

  3 最大功率跟踪控制

  目前,常用的最大功率跟踪方法有恒定电压跟踪法、扰动观察法和电导增量法。其中,电导增量法的跟踪准确性最高,在环境快速变化的情况下具有良好的跟踪性能,因此被广泛采用。电导增量法是通过比较光伏电池阵列的瞬时导抗与导抗变化量的方法来完成最大功率点的跟踪。

  达到最大功率点的条件,即当输出电导的变化量等于输出电导的负值时,光伏电池阵列工作于最大功率点。在辐射强度和温度变化时,光伏电池阵列的输出电压能平稳追随环境的变化,且输出电压波动小[3]。

  电导增量法通过设定一些很小的变化阈值,使光伏电池阵列稳定在最大功率点的邻域内,而不是围绕着最大功率点前后波动。当外界环境发生变化时,从一个稳态过渡到另外一个稳态时,电导增量法根据电流的变化就能够做出正确的判断,而不会像扰动观察那样出现误判断。

  图3中的U(k)、I(k)是检测到的光伏电池阵列当前电压、电流值,U(k-1)、I(k-1)是上一周期的电压、电流采样值。

电导增量法的控制流程图

图3 电导增量法的控制流程图

  光伏电池阵列与Boost电路相接时,假设外部负载仍为纯电阻负载,并忽略Boost电路本身阻抗的情况下,根据Boost电路的阻抗变换关系,容易得出Boost电路的等效输入阻抗为Req=(1-D)2R。 D为Boost电路的开关占空比,R为电阻性负载的阻抗。

Boost电路的拓扑结构

图4 Boost电路的拓扑结构

  对光伏电池阵列进行最大功率跟踪过程中,工作电压的控制是通过Boost升压电路完成的。当占空比D越大时,Boost电路的输入阻抗就越小,占空比D越小时,Boost电路的输入阻抗就越大。通过改变Boost电路的占空比D,使其等效输入阻抗与光伏输出阻抗相匹配,实现光伏电池的最大功率输出,这是采用Boost电路能够实现最大功率跟踪的理论依据。对于Boost电路的工作原理,本文不再赘述。

  4 最大功率跟踪时的问题

  采用电导增量法进行最大功率跟踪过程中,通过调节Boost电路的占空比来实现光伏电池阵列的工作点电压的控制,从而达到最大功率的跟踪。然而通过光伏电池的电压/电流曲线和电压/功率曲线可以看出,工作在恒压源区和恒流源区是改变相同步长的工作电压对光伏电池的输出功率改变是不同的。在恒流源区内,输出电流对工作电压的改变敏感度很低,而在恒压源区对电流的影响却是非常明显。为了能够更快、更精确的追踪到光伏电池的最大功率输出的工作电压电流,需要对跟踪的方法进行改进。

  5 改进方法

  根据相同工作电压变化量在恒压源区和恒流源区的不同影响效果,对两个区内电压变化的步长作适当调整,提高最大功率跟踪的效率。经过测试,通常使用的光伏电池的最大功率点电压一般为其开路电压的(0.75-0.85)倍,所以恒流源区与恒压源区电压范围的比例关系大概是4:1。如果判断出当前光伏电池阵列工作于恒压源区时,其工作电压肯定大于最大功率点电压,要朝着减小工作电压的方向变化,取它的电压变化步长为△V;反之,如果判断出当前光伏电池阵列工作于恒流源区时,其工作电压肯定小于最大功率点电压,要朝着增大工作电压的方向变化。为了提高跟踪速度,取它的电压变化步长为4△V。

  为了提高最大功率跟踪的精度,在一定的温度和光照强度时,当光伏电池的输出功率与当前条件下所能达到的最大功率接近到一定程度时,对它的跟踪步长△V进行调制,将△V适当变小,使其更精确的跟踪最大功率。在实际运行当中,光照强度突然发生变化瞬间,光伏电池两端的工作电压不会发生明显变化,相反,光伏电池的输出电流会发生瞬间的明显变化。根据这一特点来判断△V应采用大步长值△V2还是小步长值△V1。在系统控制参数的设计时,需要根据具体的光伏电池参数,来确定工作电流的变化量 的值作为判断标准。改进后的电导增量法流程图如图5所示。

改进后的电导增量法流程

图5 改进后的电导增量法流程

  6 实验结果

  由实验波形很容易看出,采用改进后的电导增量的光伏系统,在光照强度很稳定时,直流母线电压的波动非常小;当光照强度突然变化时,直流母线上的电压也非常稳定,电流迅速增大,保证光伏电池始终做最大的输出。

光强突变时的母线电流和电压

图6 光强突变时的母线电流和电压

  7 结语

  利用数字信号控制器作为主要控制芯片,采用改进的MPPT控制方式,该系统具有很好的动态响应和跟踪精度,具有跟踪光伏电池阵列最大功率点的功能,提高了系统的效率,充分利用了能源。



评论


相关推荐

技术专区

关闭