LED驱动器反馈环路分析
峰值电流模式控制(在升压调节器中控制电感器/开关电流,而不是输出电流)在低端控制器和单片IC中随处可见,它们的控制开关发射极/源极与系统地相连。所有常见的可用低端控制器实现的开关调节器,诸如升压、反激(flyback)、单端初级电感转换器(SEPIC)和Cuk转换器,都有RHP零点。通过将一个输出LC极点移到高于控制环带宽的高频,电流模式控制简化了控制到输出的转换功能。电压调节器和电流调节器的性能都可以借助如下的功率级转换方程进行预测:
公式中电压调节器和电流调节器的不同,可以参考下面的图1和图2。
图1 电压调节电路
图2 电流调节电路
DC增益
(左边为电压稳压器;右边为电流稳压器)
Gi是控制器IC的参数,ROP = VO / IF
系统极点
(上面为电压调节器;下边为电流调节器)
RHP零点
(上面为电压调节器;下面为电流调节器)
对升压和升流调节器来说,下面的数值是一样的:
占空比
(VD是输出二极管压降,典型值为0.5V)
ESR零点
采样双极品质因数
固有的电感电流斜率
斜率补偿
(Vm是控制器IC的参数;fSW是开关频率。)
采样双极拐角频率
到目前为止,从电压调节转为电流调节的最大变化在于DC增益,它源自于与RO相比值很小的rD,以及由组合负载和反馈路径产生的电阻分压器效应。考虑一个输入12V 、输出36V/1A的电压调节器,DC增益计算得出的结果约为30dB。对比一下,驱动10个白光LED((VO ≈36V)的电流调节器,电流也为1A、输入也为12V,其DC增益仅为6dB。
放大的电流感应
几乎所有带可调输出的调节器,都可改装成一个LED驱动器,但简单地用LED串替换顶部反馈分压电阻并用电流感应电阻替换底部反馈电阻,将耗费电能并产生热量。若不对电流感应电压进行放大以匹配1.
评论