新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 锁相环(PLL)的电源管理设计

锁相环(PLL)的电源管理设计

作者:时间:2011-10-22来源:网络收藏

  本文讨论图1所示的基本PLL方案,并考察每个构建模块的要求。

  图1.显示各种电源管理要求的基本锁相环

  图1.显示各种要求的基本锁相环

  PLL中,反馈控制环路驱动电压控制振荡器(),使振荡器频率(或相位)精确跟踪所施加基准频率的倍数。许多优秀的参考文献 (例如Best的锁相环1),解释了PLL的数学分析;ADI的ADIsimPLL?等仿真工具则对了解环路传递函数和计算很有帮助。下面让我们依次考察一下PLL构建模块。

  推压

  电压控制振荡器将来自鉴相器的误差电压转换成输出频率。器件“增益”定义为KVCO,通常以MHz/V表示。电压控制可变电容二极管(变容二极管) 常用于调节VCO内的频率。VCO的增益通常足以提供充分的频率覆盖范围,但仍不足以降低相位噪声,因为任何变容二极管噪声都会被放大KVCO倍,进而增加输出相位噪声。

  多频段集成VCO的出现,例如用于频率合成器ADF4350的集成VCO,可避免在KVCO与频率覆盖范围间进行取舍,使PLL设计人员可以使用包含数个中等增益VCO的IC以及智能频段切换程序,根据已编程的输出频率选择适当的频段。这种频段分割提供了宽广的总体范围和较低噪声。

  除了需要从输入电压变化转换至输出频率变化(KVCO)外,电源波动也会给输出频率变化带来干扰成分。VCO对电源波动的灵敏度定义为VCO 推压(Kpushing),通常是所需KVCO.的一小部分。例如,Kpushing通常是KVCO的5%至20%.因此,对于高增益VCO,推压效应增大,VCO电源的噪声贡献就更加举足轻重。

  VCO推压的测量方法如下:向VTUNE引脚施加直流调谐电压,改变电源电压并测量频率变化。推压系数是频率变化与电压变化之比,如表1所示,使用的是ADF4350 PLL.

  表1. ADF4350 VCO推压测

  锁相环(PLL)的电源管理设计

  参考文献2中提到了另一种方法:将低频方波直流耦合至电源内,同时观察VCO频谱任一侧上的频移键控 (FSK)调制峰值(图2)。峰值间频率偏差除以方波幅度,便得出VCO推压系数。该测量方法比静态直流测试更精确,因为消除了与直流输入电压变化相关的任何热效应。图2显示ADF4350 VCO输出在3.3 GHz、对标称3.3 V电源施加10 kHz、0.6 V p-p方波时的频谱分析仪曲线图。对于1.62 MHz/0.6 V或2.7 MHz/V的推压系数,最终偏差为3326.51 MHz – 3324.89 MHz = 1.62 MHz.该结果可与表1中的静态测量 2.3 MHz/V比较。

  锁相环(PLL)的电源管理设计

  图2.ADF4350 VCO通过10kHz、0.6v p-p方波响应

  电源调制的频谱分析仪曲线图

  在PLL系统中,较高的VCO推压意味着VCO电源噪声的增加倍数更大。为尽可能降低对VCO相位噪声的影响,需要低噪声电源。

  参考文献3和参考文献4提供了不同低压差调节器()如何影响PLL相位噪声的示例。例如,文献中对ADP3334和ADP150 为ADF4350供电时的性能进行了比较。ADP3334调节器的集成均方根噪声为27 μV(40多年来,从10 Hz至100 kHz)。该结果可与ADF4350评估板上使用的 ADP150的9 μV比较。图3中可以看出已测量PLL相位噪声频谱密度的差异。测量使用4.4 GHz VCO频率进行,其中VCO推压为最大值(表1),因此属于最差情况结果。ADP150调节器噪声足够低,因此对 VCO噪声的贡献可以忽略不计,使用两节(假定“无噪声”)AA电池重复测量可确认这一点。

  图3.使用ADP3334和ADP150LDO对(AA电池)供电时ADF4350在4.4GHz下的相位噪声比较

  图3.使用ADP3334和ADP150LDO对(AA电池)供电时ADF4350在4.4GHz下的相位噪声比较

  图3强调了低噪声电源对于ADF4350的重要性,但对电源或 LDO的噪声该如何要求呢?

  与VCO噪声类似,LDO的相位噪声贡献可以看成加性成分LDO(t), 如图4所示。再次使用VCO超额相位表达式得到:

  锁相环(PLL)的电源管理设计

  或者在频域中为:

  锁相环(PLL)的电源管理设计

  其中vLDO(f)是LDO的电压噪声频谱密度。

  1 Hz带宽内的单边带电源频谱密度SΦ(f)由下式得出:

  锁相环(PLL)的电源管理设计

  以dB表示时,用于计算电源噪声引起的相位噪声贡献的公式如下:

  锁相环(PLL)的电源管理设计

  锁相环(PLL)的电源管理设计  (1)

  其中 L(LDO)是失调为f时,调节器对VCO相位噪声(以dBc/Hz表示)的噪声贡献; f; Kpushing是VCO推压系数,以Hz/V表示;vLDO(f)是给定频率偏移下的噪声频谱密度,以V/√Hz表示。

  图4.小信号加性vco电源噪声模型

  图4.小信号加性vco电源噪声模型

  在自由模式VCO中,总噪声为 LLDO值加VCO噪声。以dB表示则为:

  锁相环(PLL)的电源管理设计

  例如,试考虑推压系数为10 MHz/V、在100 kHz偏移下测得相位噪声为–116 dBc/Hz的VCO:要在100 kHz下不降低VCO噪声性能,所需的电源噪声频谱密度是多少?电源噪声和VCO噪声作为方和根添加,因此电源噪声应比VCO噪声至少低6 dB,以便将噪声贡献降至最低。所以LLDO应小于–122 dBc/Hz.使用公式1,

  锁相环(PLL)的电源管理设计

  求解vLDO(f),

  在100 kHz偏移下,vLDO(f) = 11.2 nV/√

  给定偏移下的LDO噪声频谱密度通常可通过LDO数据手册的典型性能曲线读取。

  当VCO连接在负反馈PLL内时,LDO噪声以类似于VCO噪声的方式通过PLL环路器进行高通。因此,上述公式仅适用于大于PLL环路带宽的频率偏移。在PLL环路带宽内,PLL可成功跟踪并滤 LDO噪声,从而降低其噪声贡献。

  LDO

  要改善LDO噪声,通常有两种选择:使用具有更少噪声的LDO,或者对LDO输出进行后置滤波。当无滤波器的噪声要求超过经济型LDO的能力时,滤波选项可能是不错的选择。简单的LC π 滤波器通常足以将带外LDO噪声降低20 dB(图5)。

  图5.用于衰减LDO噪声的LCπ滤波器

  图5.用于衰减LDO噪声的LCπ滤波器

  选择器件时需要非常小心。典型电感为微亨利范围内(使用铁氧体磁芯),因此需要考虑电感数据手册中指定的饱和电流(ISAT), 作为电感下降10%时的直流电平。VCO消耗的电流应小于ISAT. 有效串联电阻(ESR) 也是一个问题,因为它会造成滤波器两端的IR压降。对于消耗300 mA直流电流的微波VCO,需要ESR小于0.33 ?的电感,以产生小于100 mV的IR压降。较低的非零ESR还可抑制滤波器响应并改善LDO稳定性。为此,选择具有极低寄生ESR的电容并添加专用串联电阻可能较为实际。上述方案可使用可下载的器件评估器如NI Multisim?在SPICE 中轻松实现仿真。

  电荷泵和滤波器

  电荷泵将鉴相器误差电压转换为电流脉冲,并通过PLL环路滤波器进行积分和平滑处理。电荷泵通常可在最多低于其电源电压(VP)0.5 V的电压下工作。例如,如果最大电荷泵电源为5.5 V,那么电荷泵只能在最高5 V输出电压下工作。如果VCO需要更高的调谐电压,则通常需要有源滤波器。有关实际PLL的有用信息和参考设计,请参见电

滤波器相关文章:滤波器原理


滤波器相关文章:滤波器原理


电源滤波器相关文章:电源滤波器原理


电荷放大器相关文章:电荷放大器原理
高通滤波器相关文章:高通滤波器原理
鉴相器相关文章:鉴相器原理
数字滤波器相关文章:数字滤波器原理
锁相环相关文章:锁相环原理
激光器相关文章:激光器原理
激光二极管相关文章:激光二极管原理
汽车防盗机相关文章:汽车防盗机原理
频谱分析仪相关文章:频谱分析仪原理

上一页 1 2 下一页

关键词: 电源管理 VCO LDO 滤波

评论


相关推荐

技术专区

关闭