新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 充电电池的研发呈多样化,更加注重安全性能

充电电池的研发呈多样化,更加注重安全性能

作者:时间:2012-01-10来源:网络收藏

  此前充电电池在手机及笔记本电脑等便携终端用途方面得到了不断发展。在电动汽车及定置用蓄电系统等多种用途需求高涨的形势下,充电电池的研发也呈现出了多样化趋势。不仅是及氧化还原液流电池等新型器件也开始受到关注。

  充电电池的开发开始发生巨大变化。其原因是,除了此前作为主流用途的便携终端之外,用于电动汽车及定置用蓄电系统等多种用途的机遇也在急剧增加。

充电电池的研发呈多样化,更加注重安全性能

  有预测称,到2020年仅电动汽车的年市场规模就会达到900万辆,的产量需要提高至约相当于目前市场规模的两倍注1)。

  注1)2020年HEV的年市场规模达到600万辆、EV及PHEV合计达到300万辆(销量)时,假设每辆HEV平均需要1kWh容量、每辆EV和PHEV需要10kWh容量的,电池年产量就需要达到36GWh。目前锂离子充电电池的年市场规模为18GWh左右,因此仅电动汽车用电池的市场规模就会达到目前的两倍。

  此外,受东日本大地震后核电站事故的影响,整个日本出现了供电短缺,因而对定置用蓄电系统的需求急剧增加。在2011年10月举行的“CEATEC JAPAN 2011”上,大型电子厂商纷纷展出了蓄电系统。尽管各企业均未正式开始销售,但都打算在2012年以后扩大业务。

  各种用途需要的性能不同

  为了满足快速扩大的市场需求,充电电池的研发日益活跃。此前作为市场主流的便携终端用充电电池,以旨在实现高容量化的研发为主。手机及笔记本电脑等要求电池具备的最重要性能是,充电一次可使用很长时间。此前,人们一直认为寿命达到“2年左右即可”,宁可牺牲寿命也要优先实现高容量化。

  但电动汽车及定置用途要求电池具备的性能更加多样(图1)。比如,电动汽车有混合动力车(HEV)、插电式混合动力车(PHEV)及纯电动车(EV)等多种车型。各种车型要求电池具备的性能也不同。

  电池具备的特性日益多样化

  图1:随着用途的不断扩大,要求电池具备的特性也日益多样化

  不仅是便携终端,汽车及定置用途对电池的需求也不断高涨。因而,要求电池具备的特性也随之呈现出多样化,除了高容量之外,还包括高输出功率、长寿命及高安全性等。

  具体而言,HEV在加减速时需要大电力交换,因此高输出功率的电池较为理想。而EV与便携终端一样,要求充电一次可行驶很长的距离,因此必须实现高容量化。对电池容量的要求为HEV<PHEV<EV,而对电池输出功率的要求为HEV>PHEV>EV。不过,电动汽车与便携终端相比,要求电池具有更长的寿命及更高的安全性。

  定置用途也一样。以夜间储存电力供白天使用的电网电力高峰期转换(Peak Shift)用途为代表,大楼蓄电系统及家用蓄电系统要求电池具备非常大的容量。而用来抑制安装量不断增加的大规模光伏发电及风力发电的输出功率变化时,则必须使用对输出功率变化具有较高耐性的高功率电池。而且,定置用途与电动汽车用途相比,不仅要求电池寿命更长,而且用于大楼蓄电系统及家用蓄电系统时,必须具备发生火灾时不会燃烧的高安全性。

  高功率

  随着用途的不断扩大,除了此前的高容量化之外,各用途还迫切要求电池具备高输出功率、高安全性及长寿命等特性。今后锂离子充电电池的改进仍是开发重点,但估计有的领域会兴起新的(图2)。

  仍以锂离子充电电池为主,但新型蓄电装置开始兴起

  图2:仍以锂离子充电电池为主,但新型开始兴起

  今后在各种用途中仍以锂离子充电电池为主,但估计各种蓄电装置会按不同用途区分使用,用于高输出功率用途,氧化还原液流电池等用于大容量用途。

  比如,HEV用途以及大规模可再生能源的输出功率变动平均化用途方面,功率高且寿命长的锂离子电容器的使用机会将会增加。此外,定置用大容量蓄电系统用途方面,可轻松实现大型化的氧化还原液流电池也备受关注。

  关于锂离子电容器与氧化还原液流电池,下面根据二者与锂离子充电电池的不同,介绍一下两种产品的特点(表1)。锂离子充电电池利用的是锂离子的脱离及附着反应,因此可以组合多种正极材料与负极材料,研发候选对象较多。  电池及电容器的特点

  而锂离子电容器是双电层电容器的一种。正极端利用双电层效应产生的静电容量,而负极端则与锂离子充电电池一样利用伴随锂离子的氧化还原反应而产生的蓄电效应 注2)。

  注2)锂离子电容器的能量密度高于双电层电容器的原因在于,单元的电压及静电容量增加。传统电容器的电压为2.5~3V左右,通过添加锂离子,可使电压上升至约4V。添加锂离子时,负极蓄积的静电容量高于以往的活性炭,整个单元的静电容量可增至原来的约两倍。因此,可将能量密度提高至3.5~5倍。

  由此,使得锂离子电容器既具备双电层电容器的高功率及长寿命优点,又克服了双电层电容器的能量密度低的缺点。

  日本ACT、FDK、JM Energy及新神户电机等企业均已开始投产锂离子电容器。2011年10月,FDK与旭化成共同成立了锂离子电容器合资公司,开始正式开展业务 注3)。

  注3)FDK与旭化成于2011年10月3日成立了从事锂离子电容器业务的合资公司“旭化成FDK能源设备”。FDK的出资比例占51%,旭化成占49%。

  可轻松实现大型化的氧化还原液流电池

  氧化还原液流电池利用隔膜隔离两种离子溶液,用泵使两种溶液从储液罐开始循环流动,设置在两种溶液中的电极会分别进行氧化反应和还原反应。目前,利用钒(V)价态变化的电池已达到实用水平。

  日本的住友电气工业从1985年开始与关西电力合作进行开发,到2000年前后已有多个研究成果投入使用。但当时多用于储存夜晚电力供白天使用等高峰期转换用途,只具有夜间与白天电费差别带来的成本优势,因而无法增加销量。

  但最近,引入太阳能发电和风力发电等可再生能源已成趋势,而且东日本大地震后电力短缺,高峰期转换用途需求高涨,因而有观点认为,“氧化还原液流电池足可应用于稳定供电用途”(住友电工)。

  氧化还原液流电池与锂离子充电电池相比,虽然能量密度偏低,但由于提高输出功率只需增设单元堆栈,提高容量只需增设钒溶液罐,因此很容易实现大型化。而且,还具有可准确测量充电状态的特点。

  住友电气工业2011年6月公开的用于实证试验的氧化还原液流电池,配备两个最大输出功率为2kW的单元。额定输出功率为2kW,该输出功率可确保10kWh的容量。公开的系统主要用于实证试验,该公司打算在实际应用时以采用数MW或数MWh级的系统为目标。

  高容量化仍为开发主流

  各领域将如何瞄准2020年推进电池开发呢?在便携终端领域,估计今后的开发主流仍以实现高容量化为目标(图3)。尽管目前的便携终端用充电电池也有镍氢充电电池及镍镉(Ni-Cd)充电电池等,但传统手机、智能手机、笔记本电脑及平板终端已开始采用锂离子充电电池。

  各不同用途的开发方向

  图3:各不同用途的开发方向

  便携终端用途方面,技术开发重心是高容量化(a)。电动汽车用途方面,EV及PHEV用途的目标是使可实现高容量化的电池达到实用水平,此外HEV用途有望采用锂离子电容器(b)。定置用途方面,估计在面向蓄电系统提高安全性与寿命的同时,以降低成本为目标的新型电池的开发也会不断推进(c)。

  目前,锂离子充电电池单位体积的能量密度已达到600Wh/L左右,在市面上的充电电池中能量密度最高注4)。

  注4)在目前的便携


上一页 1 2 下一页

评论


技术专区

关闭