测量并抑制存储器件中的软误差研究
软误差率(SER)问题是于上个世纪70年代后期作为一项存储器数据课题而受到人们的广泛关注的,当时DRAM开始呈现出随机故障的征兆。随着工艺几何尺寸的不断缩小,引起失调所需的临界电荷的减少速度要比存储单元中的电荷聚集区的减小速度快得多。这意味着: 当采用诸如90nm这样的较小工艺几何尺寸时,软误差是一个更加值得关注的问题,并需要采取进一步的措施来确保软误差率被维持在一个可以接受的水平上。
SER的倾向和含意
工艺尺寸的压缩已经是实现行业生存的主要工具,而且对增加密度、改善性能和降低成本起着重要的推动作用。随着器件加工工艺向深亚微米门信号宽度(0.25mm→ 90nm?)迈进,存储器产品的单元尺寸继续缩小,从而导致电压越来越低(5V→3.3V→1.8V……)以及存储单元内部电容的减小(10fF→5fF……)。由于电容的减小,存储器件中的临界电荷量(一个存储单元用于保存数据所需的最小电荷量)继续缩小,因而使得它们对SER的自然抵御能力下降。这反过来又意味着能量低得多的a粒子或宇宙射线都有可能对存储单元形成干扰。
系统级的含意和重要性
软误差是以FIT来衡量的。FIT率只不过是10亿个器件操作小时中所出现的故障数。1000 FIT对应于一个约144年的MTTF(平均无故障时间)。为了对软误差的重要性有所了解,我们不妨来看一下它们在典型存储应用中所具有的潜在影响的一些实例。比如,一部采用了一个软误差率为1000 FIT/Mbit的4Mbit低功率存储器的蜂窝电话将很可能每28年出现一次软误差。而一个采用了软误差率为600 FIT/Mbit的100Gbits同步SRAM的标准高端路由器则有可能每17个小时出现一次错误。此外,软误差之所以重要还在于目前其FIT率是硬可靠性故障的典型FIT率的10倍以上。显然,对于蜂窝电话而言软误差并无大碍,但那些采用大量存储器的系统则有可能受到严重影响。
SER的根源
现在,您对软误差已经有了一个总的概念,下面对这些引发软误差的不同根源的机理逐个做一下简单的探讨。
α粒子的影响
半导体器件封装所采用的压模化合物中有可能含有诸如Th232 和U238等杂质,这些物质往往会随着时间的推移发生衰变。这些杂质会释放出能量范围为2~9MeV(百万电子伏特)的α粒子。在硅材料中,形成电子空穴对所需的能量为3.6eV。这就意味着α粒子有可能生成约106个电子空穴对。耗尽区中的电场将导致电荷漂移,从而使晶体管承受电流扰动。如果电荷转移量在0或1的状态下超过了存储于存储单元中的临界电荷量(QCRIT),则存储数据会发生翻转。
宇宙射线的影响
高能量的宇宙射线和太阳粒子会与高空大气层起反应。当发生这种情况时,将产生高能量的质子和中子。中子尤其难对付,因为它们能够渗透到大多数人造结构中(例如,中子能够轻易地穿透5英尺厚的混凝土)。这种影响的强度会随着所处的纬度和海拔高度的不同而变化。在伦敦,该影响要比在赤道地区严重1.2倍。在丹佛,由于其地处高海拔,因此这种影响要比地处海平面的旧金山强三倍。而在飞机上,这种影响将是地面上的100~800倍。
高能量中子的能量范围为10~800MeV,而且,由于它们不带电荷,所以与硅材料的反应不同于α粒子。事实上,中子必须轰击硅原子核才会引起软误差。这种碰撞有可能产生α粒子及其他质量较重的离子,从而生成电子空穴对,但这种电子空穴所具有的能量比来自压模化合物的典型α粒子所具有的能量高。
接地电阻相关文章:接地电阻测试方法
评论