新闻中心

EEPW首页 > 汽车电子 > 设计应用 > 智能天线实验平台研究

智能天线实验平台研究

——
作者:时间:2007-02-06来源:电子技术应用收藏

广州华南理工大学电子与信息工程学院(510640) 谢泽明 赖声礼 龙智文
 
  摘 要:介绍了的起源、发展以及实验平台的研究概况;提出了一个实验平台的实现方案。该方案基于新一代数字信号处理器TMS320C6701,采用高速A/D、D/A以及零中频I/Q调制解调技术,工作于2.4GHz,采用八元天线阵列。该平台用于中智能天线算法、空时编码、MIMO技术和技术的研究。
  关键词: 智能天线  

  1 智能天线技术的起源与发展
  智能天线的概念是二十世纪80年代末到90年代初提出的。广义的智能天线可以理解为能够收集、处理信息并利用已获得的知识自动调整结构参数以适应不同情况的天线。目前大家讨论的智能天线系统都与,特别是蜂窝移动通信系统紧密相连,一般指由多个天线单元组成的天线阵列系统。它可以利用数字信号处理技术对多个不同的用户产生多个不同的空间波束。每个波束的最大方向自动地对准各自用户的方向,而把零接收方向对准干扰方向,从而提高移动通信系统的性能。
  近年来大量的研究表明,智能天线可以在以下方面提高未来移动通信系统的性能[1]:(1)扩大系统的覆盖区域;(2)提高系统容量;(3)提高频谱利用率;(4)减少信号间干扰(如同信道干扰、多址干扰和多径干扰等);(5)降低基站发射功率,减少电磁环境污染。
  智能天线最初以自适应天线的形式广泛应用于雷达、声纳及军事通信领域。由于价格等因素一直未能普及到其他通信领域。近二十年来,移动通信事业飞速发展,移动通信用户呈爆炸性增长,通信资源匮乏日益严重,通信容量不足、通信质量下降等成为亟待解决的问题。如何消除同信道干扰、多址干扰与多径衰落的影响成为提高无线通信系统性能考虑的主要因素。自二十世纪80年代开始,即第一代蜂窝移动通信系统开始,人们便开始探讨利用自适应天线消除同信道干扰和多径衰落的影响、获得多径分集增益。到二十世纪90年代初,这一思路发展为智能天线的概念;二十世纪90年代末,随着技术的发展,人们进一步提出了软件天线的概念。近年来,由于数字信号处理技术的迅速发展,数字信号处理芯片处理能力不断提高,使利用数字技术在基带进行波束成形成为可能,由此代替了以往在射频段利用模拟电路进行波束成形的方法,而且天线系统更加可靠和灵活。由于数字信号处理芯片的价格和性能已为现代通信系统所接受,智能天线技术的研究开始从军事领域向民用移动通信领域转移,智能天线技术在移动通信中的应用研究迅速发展并显示出了巨大的潜力。
  2 智能天线实验平台的研究概况
  目前智能天线的研究主要沿着以下几个方向开展[1]:一是研究智能天线对现代移动通信系统的作用,利用仿真或理论研究的方法探讨应用智能天线对移动通信系统的抗干扰能力、系统容量、抗多径衰落能力的改善;二是智能天线基础理论的研究,主要研究智能天线的控制算法,利用理论和仿真的方法,结合具体的移动通信系统,研究快速高性能的智能天线新算法;三是建立智能天线硬件实验平台(测试床),在实际的电磁环境下测试各种天线阵列、智能天线控制算法的性能,以确定智能天线的解决方案,并着手解决智能天线实用化的技术问题(如阵列单元的互耦、各单元通道不一致性的实时校准技术等)。
  要使智能天线技术在移动通信领域得到应用,单靠理论和仿真研究是不够的。智能天线硬件实验平台是研究智能天线技术强有力的手段。世界各国都十分重视智能天线实验平台的建设2~4。目前,实验平台大都采用基带上实现数字波束合成技术的方案,即上行接收时每个天线阵列单元输出下变频到中频,然后进行模拟的正交检测(I/Q检测),对模拟的I/Q信号数字化后进行数字波束成形(DBF);下行发射时在数字波束成形器中形成各天线单元的数字基带信号(数字化I/Q信号),经D/A变换后形成模拟I/Q信号,然后进行I/Q调制和上变频,再送到天线单元辐射。这样的方案对A/D、D/A和数字信号处理芯片的要求比较低,使用目前的技术容易实现。数字波束成形器和自适应控制采用FPGA、芯片或计算机实现。
  欧洲通信委员会在RACE计划中实施了一项称为TSUNAMI的智能天线技术研究项目,建立一个智能天线测试床,由8个阵元分别组成直线形、圆形和平面形阵列。阵元间距可调,工作频率1.89GHz,数字波束成形采用ERA公司的专用ASIC芯片DBF1108、TMS320C40芯片作为中央控制。
  日本ATR光电通信研究所研究用于卫星通信的多波束智能天线,采用4



评论


相关推荐

技术专区

关闭