如今的便携式电子设备中电池技术包括电量检测算法、电池充电算法与电池充电技术等几个方面。众所周知,充电式电池化学反应有镍镉、镍氢、锂离子和锂聚合物4种程式,作为便携式电子设备来说,虽然这4种电池程式各有特点,但从能量密度与安全性角度的发展与实践可知,锂离子电池和锂聚合物电池的优势己成为小型长运行时间的设备的理想之选,比如笔记本电脑以及基于硬盘的PMP等。对便携式电子设备工程师来说,正确选择与应用好便携式电子设备中电池技术至关重要,值此本文将对此作研讨,并作应用举例分析。
1、关于细流充电、快速充电和稳定充电的电池充电算法
根据最终应用的能量需求,一个电池组可能包含最多4个锂离子或锂聚合物电池芯,其配置可有多种变化,同时带有一个主流的电源适配器:直接的适配器、USB接口或汽车充电器。除去电芯数量、电芯的配置或电源适配器类型上的差别,这些电池组都有同样的充电特性。因此它们的充电算法也一样。锂离子与锂聚合物电池最好的充电算法可以分为3个阶段:细流充电、快速充电和稳定充电。
1.1 细流充电
用于对深度放电的电芯进行充电。当电芯电压在低于大约2.8V时,用一个恒定的0.1C的电流为它充电。
1.2 快速充电
电芯电压超过细流充电的门槛时,提高充电电流进行快速充电。快速充电电流应低于1.0C。
1.3 稳定电压
在快速充电过程中,一旦电芯电压达到4.2V,稳定电压阶段就开始了。这时可通过最小充电电流或定时器或这两者的联合来中断充电。当最小电流低于大约0.07C时,可中断充电。定时器则要靠一个预设的定时器来触发中断。
高级的电池充电器通常带有附加的安全功能。比如,如果电芯温度超出给定窗口,通常是0℃--45℃,充电就会暂停。
除去某些非常低端的设备,现在市面上的锂离子/锂聚合物电池充电方案都集成或是带有外置的元件,以便按照充电特性进行充电,这不光是为了取得更佳充电效果,同时也是为了安全。
1.4 锂离子/聚合物电池的充电算应用举例-双输入1.2A锂电池充电器LTC4097
LTC4097可用于交流适配器或USB电源为单节锂离子/聚合物电池充电。图1为双输入1.2A锂电池充电器LTC4097示意图。它采用恒定电流/恒定电压算法充电,从交流适配器电源充电时,可编程充 电电流高达1.2A,而用USB电源则可高达1A,同时自动检测在每个输入端是否存在电压。该器件还提供USB限流。应用包括PDA、MP3播放器、数码 相机、轻型便携式医疗和测试设备以及大彩屏蜂窝电话。其性能特点:无需外部微控制器终止充电;输入电源自动检测和选择;通过电阻从交流适配器输入充电的可编程充电电流高达1.2A;通过电阻的可编程 USB充电电流高达1A;100%或20% USB充电电流设置;输入电源存在输出和NTC偏置(VNTC)引脚具120mA驱动能力;NTC热敏电阻输入(NTC)引脚用于温度合格的充电;预设置电池浮动电压具±0.6%的准确度;热调节最大限度地提高充电速率且无过热风LTC4097可用于交流适配器或USB电源为单节锂离子/聚合物电池充电。其采用恒定电流/恒定电压算法充电,从交流适配器电源充电时,可编程充电电流高达1.2A,而用USB电源则可高达1A,同时自动检测在每个输入端是否存在电压。该器件还提供USB限流。应用包括PDA、MP3播放器、数码 相机、轻型便携式医疗和测试设备以及大彩屏蜂窝电话。
2、锂离子/聚合物电池充电方案
锂离子/聚合物电池的充电方案对于不同数量的电芯、电芯配置以及电源类型还是不同的。目前主要有3种主要的充电方案:线性,Buck(降压)开关和SEPIC(升压与降压)开关。
2.1 线性方案
当充电器输入电压大于全充满电芯加上充足净空之后的开路电压时,最好用线性方案,特别是1.0C快速充电电流不比1A大太多时。比如,MP3播放器通常只有一个电芯,容量从700到1500mAh不等,满充开路电压是4.2V。MP3播放机的电源通常是AC/DC适配器或者是USB接口,其输出是规则的5V;这时,线性方案的充电器就是最简单、最有效率的方案。图2所示为锂离子/聚合物电池充电方案线性方案,基本结构和线性电压规整器一样。
线性方案的充电器应用例举-双输入Li+充电器及智能电源选择器MAX8677A MAX8677A是双输入USB/AC适配器线性充电器,内置Smart Power Selector,用于由可充电单节Li+电池供电的便携式设备。该充电器集成了电池和外部电源充电和切换负载所需的全部功率开关,因此无需外部 MOSFET。MAX8677A理想用于便携式设备,例如智能手机、PDA、便携式多媒体播放器、GPS导航设备、数码相机、以及数码摄像机。
MAX8677A可以工作于独立的USB和AC适配器电源输入下或两个输入中的任意一个输入下。当连接外部电源时,智能电源选择器允许系统不连接电池或可以与深度放电电池连接。智能电源选择器自动将电池切换到系统负载,使用系统未利用的输入电源部分为电池充电,充分利用有限的USB和适配器输入电源。所有需要的电流检测电路,包括集成的功率开关,均集成于片上。DC输入电流限最高可调节至2A,而DC和USB输入均可支持100mA、500mA和USB挂起模式。充电电流可调节至高达1.5A,从而支持 宽范围的电池容性。MAX8677A的其他特性包括热调节、过压保护、充电状态和故障输出、电源好监视、电池热敏电阻监视、以及充电定时器。MAX8677A采用节省空间的、热增强型、4mm×4mm、24引脚的TQFN封装,规定工作于扩展级温度范围(-40~+85℃)。
2.2 Buck(降压)开关方案
当1.0C充电的电流大于1A,或者输入电压比电芯的全充满开路电压高很多时,Buck或者降压方案就是一个更好的选择。比如,在基于硬盘的PMP中,通常使用单芯锂离子电池,全充满开路电压是4.2V,容量从1200到2400mAh不等。而现在PMP通常是用汽车套件来充电,它的输出电压在9V到16V之间。在输入电压和电池电压之间比较高的电压差(最小4.8V)会让线性方案降低效率。这种低效率,加上大于1.2A的1C快速充电电流,会产生严重的散热问题。为避免这种情况,就要采用Buck方案。图3为锂离子/聚合物电池Buck充电器方案示意图,基本结构同Buck(降压)开关电压调节器完全相同。
2.3 SEPIC(升压与降压)开关方案
在某些使用3个甚至4个锂离子/聚合物电芯串联的设备中,充电器的输入电压就不总是大于电池电压。比如,笔记本电脑使用3芯锂离子电池组,满充开路电压是12.6V(4.2V x3),容量从1800mAh到3600mAh。输入电源要么是输出电压1 6V的AC/DC适配器,要么是汽车套件,输出电压在9V到16V之间。很显然地,线性和Buck方案都不能为这组电池组充电。这就要用上SEPIC方案,它能在输出电压高于电池电压时工作,也能在输出电压低于电池时工作。
3、电量检测算法
许多可携式产品都利用电压测量值来估计电池剩馀电量,但是电池电压与剩馀电量的关系却会随著放电率、温度和电池老化程度而改变,使这种方法的误差率最高可达50%。市场对使用时间更长的产品需求不断增强,因此系统设计人员需要更加精确的解决方案。使用电量检测计吧来测量电池充人或消耗的电量,将能够在很宽的应用电源级别范围内提供更精确的电池电量估测。
3.1 电量检测算法应用举例之一,功能完整的单/双电池便携式应用电池组设计
3.11 电量检测原理
较好的电量检测计至少要具备电池电压、电池组温度和电流、测量方法;一个微处理9a;和一套及业经验证的电量检测算法。bq2650x及bq27x00是功能完整的电量检
评论