开关电源中电子辐照对功率双极晶体管损耗分析
表1 四组APT13003E 的FT测试结果
从表1中我们可以看到, 经过辐照后, 储存时间ts 随着辐照剂量的增大有很大幅度的减小,下降时间tf 有所减小, 上升时间tr 有所增加; 电流放大系数随着辐照剂量的增加而下降; 饱和压降和击穿电压HBVceo随辐照剂量的增大而增大。
3 系统测试结果
将四组不同的APT13003E 开关晶体管放入同一个使用BCD半导体公司研发的AP3765充电器系统中, 该充电器的功率是3W, 输入交流电压范围是85V ~ 264 V, 输出直流电压是5 V.图3所示为85 V、115 V、230 V 和264 V 交流输入电压下, 使用电子辐照后的APT13003E 与常规的APT13003E在输出负载电流分别是0. 15 A、0. 30 A、0. 45 A、0. 60 A(即25%、50%、75%、100%负载)下的系统平均效率增加值。
图3 电子辐照后的APT13003E与常规的APT13003E在各个交流输入电压下系统平均效率增加百分比
从图3 中可以看到, 在较低的交流输入电压(如85 V和115 V )下, 使用辐照后的APT13003E比使用未辐照的APT13003E 系统效率都有所提高, 而在较高交流输入电压下(如230 V 和264 V ),辐照后的APT13003E 未能使系统效率提高。在85 V 交流输入电压下,辐照剂量为10 kGy 的APT13003E的性能最好, 开关晶体管的总损耗由0. 209W 降低到0. 121W, 降低了42% , 使得系统整体效率提高了2. 1% , 若该开关晶体管采用TO - 92封装, 这将使开关晶体管的结温降低约11 ℃ ; 在115 V交流电压下, 系统的整体效率也提高了约1. 4%, 开关晶体管的结温将降低约7℃, 这就有效地提高开关晶体管的可靠性,降低了开关电源的损耗。当辐照剂量进一步增加到15 kGy后, 系统效率提高的幅度反而降低, 因此要获得最佳的系统效率,需要采用最合适的辐照剂量。
我们对85 V 和264 V 交流输入电压,输出电流为0. 45 A 条件下四组APT13003E的集电极电压电流波形进行了测试, 分析了开关晶体管工作的各个阶段的损耗,结果如表2所示, tON表示导通延时, toff表示关断延时, Tw 为开关周期, P in为充电器输入功率, P los STot为开关晶体管总的损耗, P loss tot /P in为开关晶体管损耗占系统输入功率的百分比。
表2 四组APT13003E在充电器系统中各个阶段的损耗分析
从表2中可以看出, 在85 V 交流输入电压下,辐照之后的APT13003E 比未辐照的APT13003E 的关断延时有了大幅的减小,因此关断损耗大幅的减小, 如辐照为10 kGy的管子的关断损耗减小为未辐照管子的1 /6; 导通延时有所增加, 但增加的幅度较小, 导通损耗有较小的增加; 饱和压降随辐照剂量的增加而增加,因此通态损耗随辐照剂量的增加而增加。开通损耗、通态损耗的增加与关断损耗的减小是一对矛盾, 因此必须选择合适的辐照剂量, 才能使开关晶体管总的损耗最小。
而在264 V输入电压下, 辐照后关断损耗只有较小幅度的减小, 因此总损耗基本不变, 系统效率也没有改善。如图4 和图5 分别为未经辐照的APT13003E 在85 V 和264 V输入电压下基极电流、集电极电压和电流的波形。比较图4和图5中可以看出, 在264 V 输入电压条件下导通时集电极电流的尖峰比起85 V 时要大很多, 这是因为导通时变压器寄生电容充电电压增大了2. 1倍,但充电时间只增加了约0. 6倍, 所以充电电流就会大大增加, 这也导致了APT13003E 的导通损耗由85 V 下的0. 016W 变为264 V下的0. 183W, 此时导通损耗占了总的损耗的大部分, 而电子辐照对导通损耗并没有改善; 另一方面, 在APT13003E 关断时, 集电极电压并没有直接降到0, 而是先经过一个近100 ns的电流“ 尾巴”之后, 才又下降到0, 此时集电极电压已经比较大了,因此这个电流“尾巴”所造成的损耗占关断损耗的比例较大。产生这个“尾巴”的原因是, 关断开关晶体管时, 由于管子的基区比较薄, 过大的基极电流引起较大的基区电位差,使VBE 为负的情况下发射结局部正向偏置, 集电极电流迟迟降不下来。
图4 85 V交流输入电压下APT13003E基极电流、集电极电压、集电极电流波形图
图5 264 V 交流输入电压下APT13003E 基极电流、集电极电压、集电极电流波形图
而经过电子辐照后的APT13003E, 其集电极电流的这个“尾巴”并没有减小, 所以造成了辐照后的APT13003E 的关断损耗并没
电子镇流器相关文章:电子镇流器工作原理
评论