新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于ARM的油田单井油罐太阳能加温控制器的设计

基于ARM的油田单井油罐太阳能加温控制器的设计

作者:时间:2011-05-29来源:网络收藏

油田中的采油系统分布相对较为稀疏,油罐储存和传输过程中需要对油温进行加热,以避免因原油凝固而不能传送到中间站进行处理。由于每个井口的分布位置相对较远,因此需要对每个单独的油罐进行加温控制。目前所使用的加温装置大多是以伴生气为燃料的水套炉或者以电能为能源的电加热器等[1]。水套炉存在热效率低、能耗高、炉体易产生烧蚀损坏、维修维护成本高等弊端,而且,伴生气燃烧过程中所排放的废气对环境造成污染。电加热器存在耗电高、易停电、频繁扫管、造价高等弊端。本文提出了一套以太阳能集热器为主、热泵热水器为辅助热能提供装置、为主要控制器的加热系统[2]。热泵与太阳能集热设备、蓄热机构相联接的系统方式, 不仅能够有效克服太阳能本身所具有的稀薄性和间歇性,而且可以充分利用太阳能,解决原油集输、储运全天候供热问题,达到节能和减少环境污染的目的, 具有很大的应用潜力[3]。
1 系统功能
油田单井的油罐太阳能加温控制系统主要通过控制器、温度采集卡及触摸屏实现对太阳能油罐的加热和对执行机构的控制。油田单井的油罐系统主要包括石油储油罐、太阳能集热场、热水箱、补水箱、空气源热泵、低热管、电加热器、电磁阀、10只温度传感器和温度控制系统。
系统主要功能为:在光照条件好时,主要由太阳能集热装置为油罐加热;在光照不足的条件下,利用热泵为油罐补充加热;当热泵出现故障时,利用电加热为油罐加热。智能化控制装置提高了太阳能集热器效率和热泵系统性能, 从而解决了原油集输、储、运全天候供热问题,同时也大大节省了电能的使用[4]。
2 系统总体设计
油田单井的油罐主要由温度采集卡、控制器、液位传感器、触摸屏和执行机构等组成。工作过程为温度采集卡实时对10路温度信号进行循环采集,采集到的信号通过信号处理电路转变为电压信号,再通过模拟开关选择相应的传输通道,通过AIN0输入口把数据发送到ARM处理器进行A/D转换,然后由ARM微处理器根据相应的条件对执行机构做出相应的判断,同时将采集到的温度值实时显示在触摸屏上。也可以通过触摸屏对系统的工作起始时间,循环泵的温差值等各个参数进行设置。系统总体设计结构如图1所示。

基于ARM的油田单井油罐太阳能加温控制器的设计

2.1 系统的硬件电路设计
油田单井的油罐主要完成显示、存储、控制以及通信等功能。考虑到本系统对微控制器的要求较高,特别是处理器的运算速度要求较高,在处理过程中需要较多的存储空间及外扩接口,而传统的单片机已不能满足要求,因此本设计采用三星的S3C2410ARM作为微控制器。硬件设计包括:ARM的最小系统[5]、温度采集卡电路、触摸屏电路等模块电路的设计。系统控制器的原理框图如图2所示。

基于ARM的油田单井油罐太阳能加温控制器的设计

2.2 存储器接口硬件设计
S3C2410A在片内具有独立的SDRAM刷新控制逻辑,可方便地与SDRAM接口。油田油罐加温控制器终端采用了2片16位数据宽度的HY57V561620芯片并联构建成32位的SDRAM存储器系统,共有64 MB的SDRAM空间。S3C2410A处理器支持从NAND Flash启动,NAND Flash具有容量大、比NOR Flash价格低等特点。系统采用NAND Flash与SDRAM组合,可以获得非常高的性价比。该系统采用了一片型号为K9F1208UOM、容量为64 MB的NAND Flash芯片。NAND Flash中存放bootloader代码和WINCE操作系统的镜像文件。同时设置OM[1:0]=00,即处理器从NAND Flash启动。NAND Flash和处理器的接口框图如图3所示。

基于ARM的油田单井油罐太阳能加温控制器的设计


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭