新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 单片机攻击技术

单片机攻击技术

作者:时间:2011-09-23来源:网络收藏

    

  目前,攻击主要有四种技术,分别是:

   (1)软件攻击
  该技术通常使用处理器通信接口并利用协议、加密算法或这些算法中的安全漏洞来进行攻击。软件攻击取得成功的一个典型事例是对早期ATMEL AT89C 系列的攻击。攻击者利用了该系列单片机擦除操作时序设计上的漏洞,使用自编程序在擦除加密锁定位后,停止下一步擦除片内程序存储器数据的操作,从而使加过密的单片机变成没加密的单片机,然后利用编程器读出片内程序。
   (2) 电子探测攻击
  该技术通常以高时间分辨率来监控处理器在正常操作时所有电源和接口连接的模拟特性,并通过监控它的电磁辐射特性来实施攻击。因为单片机是一个活动的电子器件,当它执行不同的指令时,对应的电源功率消耗也相应变化。这样通过使用特殊的电子测量仪器和数学统计方法分析和检测这些变化,即可获取单片机中的特定关键信息。
   (3)过错产生技术
  该技术使用异常工作条件来使处理器出错,然后提供额外的访问来进行攻击。使用最广泛的过错产生攻击手段包括电压冲击和时钟冲击。低电压和高电压攻击可用来禁止保护电路工作或强制处理器执行错误操作。时钟瞬态跳变也许会复位保护电路而不会破坏受保护信息。电源和时钟瞬态跳变可以在某些处理器中影响单条指令的解码和执行。
   (4)探针技术
  该技术是直接暴露芯片内部连线,然后观察、操控、干扰单片机以达到攻击目的。为了方便起见,人们将以上四种分成两类,一类是侵入型攻击(物理攻击),这类攻击需要破坏封装,然后借助半导体测试设备、显微镜和微定位器,在专门的实验室花上几小时甚至几周时间才能完成。所有的微探针技术都属于侵入型攻击。另外三种方法属于非侵入型攻击,被攻击的单片机不会被物理损坏。在某些场合非侵入型攻击是特别危险的,但是因为非侵入型攻击所需设备通常可以自制和升级,因此非常廉价。
  大部分非侵入型攻击需要攻击者具备良好的处理器知识和软件知识。与之相反,侵入型的探针攻击则不需要太多的初始知识,而且通常可用一整套相似的技术对付宽范围的产品。

单片机侵入型攻击的一般过程

  侵入型攻击的第一步是揭去芯片封装。有两种方法可以达到这一目的:第一种是完全溶解掉芯片封装,暴露金属连线。第二种是只移掉硅核上面的塑料封装。第一种方法需要将芯片绑定到测试夹具上,借助绑定台来操作。第二种方法除了需要具备攻击者一定的知识和必要的技能外,还需要个人的智慧和耐心,但操作起来相对比较方便。
  芯片上面的塑料可以用小刀揭开,芯片周围的环氧树脂可以用浓硝酸腐蚀掉。热的浓硝酸会溶解掉芯片封装而不会影响芯片及连线。该过程一般在非常干燥的条件下进行,因为水的存在可能会侵蚀已暴露的铝线连接。
  接着在超声池里先用丙酮清洗该芯片以除去残余硝酸,然后用清水清洗以除去盐分并干燥。没有超声池,一般就跳过这一步。这种情况下,芯片表面会有点脏,但是不太影响紫外光对芯片的操作效果。最后一步是寻找保护熔丝的位置并将保护熔丝暴露在紫外光下。一般用一台放大倍数至少100倍的显微镜,从编程电压输入脚的连线跟踪进去,来寻找保护熔丝。若没有显微镜,则采用将芯片的不同部分暴露到紫外光下并观察结果的方式进行简单的搜索。操作时应用不透明的纸片覆盖芯片以保护程序存储器不被紫外光擦除。将保护熔丝暴露在紫外光下5~10分钟就能破坏掉保护位的保护作用,之后,使用简单的编程器就可直接读出程序存储器的内容。
  对于使用了防护层来保护EEPROM单元的单片机来说,使用紫外光复位保护电路是不可行的。对于这种类型的单片机,一般使用微探针技术来读取存储器内容。在芯片封装打开后,将芯片置于显微镜下就能够很容易的找到从存储器连到电路其它部分的数据总线。
  由于某种原因,芯片锁定位在编程模式下并不锁定对存储器的访问。利用这一缺陷将探针放在数据线的上面就能读到所有想要的数据。在编程模式下,重启读过程并连接探针到另外的数据线上就可以读出程序和数据存储器中的所有信息。
  还有一种可能的攻击手段是借助显微镜和激光切割机等设备来寻找保护熔丝,从而寻查和这部分电路相联系的所有信号线。由于设计有缺陷,因此,只要切断从保护熔丝到其它电路的某一根信号线,就能禁止整个保护功能。由于某种原因,这根线离其它的线非常远,所以使用激光切割机完全可以切断这根线而不影响临近线。这样,使用简单的编程器就能直接读出程序存储器的内容。
  虽然大多数普通单片机都具有熔丝烧断保护单片机内代码的功能,但由于通用低档的单片机并非定位于制作安全类产品,因此,它们往往没有提供有针对性的防范措施且安全级别较低。加上单片机应用场合广泛,销售量大,厂商间委托加工与技术转让频繁,大量技术资料外泻,使得利用该类芯片的设计漏洞和厂商的测试接口,并通过修改熔丝保护位等侵入型攻击或非侵入型攻击手段来读取单片机的内部程序变得比较容易。

单片机加密方法

  [2]科研成果保护是每一个科研人员最关心的事情,目的不使自己的辛苦劳动付注东流加密方法有软件加密,硬件加密,软硬件综合加密, 时间加密,错误引导加密,专利保护等措施有矛就有盾,有盾就有矛,有矛有盾,才促进矛盾质量水平的提高加密只讲盾,也希望网友提供更新的加密思路,现先讲一个软件加密:利用MCS-51 中A5 指令加密,(本人85 年发现的,名软件陷阱),其实世界上所有资料,包括英文资料都没有讲这条指令,其实这是很好的加密指令A5 功能是二字节空操作指令加密方法在A5 后加一个二字节或三字节操作码,因为所有反汇编软件都不会反汇编A5 指令,造成正常程序反汇编乱套,执行程序无问题仿制者就不能改变你的源程序,你应在程序区写上你的大名单位开发时间及仿制必究的说法,以备获得法律保护我曾抓到过一位获省优产品仿制者,我说你们为什么把我的名字也写到你的产品中?
  硬件加密:8031/8052 单片机就是8031/8052掩模产品中的不合格产品,内部有ROM(本人85年发现的),可以把8031/8052 当8751/8752 来用,再扩展外部程序器,然后调用8031 内部子程序当然你所选的同批8031 芯片的首地址及所需用的中断入口均应转到外部程序区。
  硬件加密
  用高电压或激光烧断某条引脚,使其读不到内部程序,用高电压会造成一些器件损坏重要RAM 数据采用电池(大电容,街机采用的办法)保护,拔出芯片数据失去机器不能起动,或能初始
  化,但不能运行
  用真真假假方法加密
  擦除芯片标识
  把8X52 单片机,标成8X51 单片机,并用到后128B的RAM 等方法,把AT90S8252 当AT89C52,初始化后程序段中并用到EEPROM 内容,你再去联想吧!
  用激光(或丝印)打上其它标识如有的单片机引脚兼容,有的又不是同一种单片机,可张冠李戴,只能意会了,这要求你知识面广一点
  用最新出厂编号的单片机,如2000 年后的AT89C 就难解密,或新的单片机品种,如AVR 单片机
  DIP 封装改成PLCC,TQFP,SOIC,BGA等封装,如果量大可以做定制ASIC,或软封装,用不需外晶振的单片机工作(如AVR 单片机中的AT90S1200),使用更复杂的单片机,FPGA+AVR+SRAM=AT40K系列
  硬件加密与软件加密只是为叙说方便而分开来讲, 其实它们是分不开的,互相支撑,互相依存的软件加密:其目的是不让人读懂你的程序,不能修改程序,你可以.......
  利用单片机未公开,未被利用的标志位或单元,作为软件标志位,如8031/8051 有一个用户标志
  位,PSW.1 位,是可以利用的程序入口地址不要用整地址,如:XX00H,XXX0H,可用整地址-1,或-2,而在整地址处加二字节或三字节操作码,在无程序的空单元也加上程序机器码,最好要加巧妙一点
  用大容量芯片,用市场上仿真器不能仿真的芯片,如内部程序为64KB 或大于64KB 的器件,
  如:AVR 单片机中ATmega103 的Flash 程序存储器为128KB
  AT89S8252/AT89S53 中有EEPROM,关键数据存放在EEPROM 中,或程序初始化时把密码写
  到EEPROM 中,程序执行时再查密码正确与否,然后....... 当然不能告说人家这是什么器件,尽量不让人家读懂程序,在这里说谎,骗人是正当防卫。
  用真真假假, 假假真真,把几种不同品种的单片机放在同一设备中,如主芯片用AVR(说是MCS51),键盘显示用AT89C2051(说是GAL),I/O 口扩展驱动用PIC(说是AT90S1200)等,当然要求你知识面广一点如果你用高级语言C 编写程序就简单了,因为C 语言程序移植方便有些国家的产品能做到三年保修,三年保不坏,三年后保坏,或三年后保有故障,可能用什么技术?你去想吧例:每次开机或关机,EEPROM 某单元加1,也可二个三个单元连接起来计数,达到某值停止工作,硬件用软件代替,软件用硬件代替用大规模CPLD 可编程器件,关于单片机加密,讲到这里,就算抛砖引玉,下面请各位高手把玉亮出来吧。


关键词: 单片机 攻击技术

评论


相关推荐

技术专区

关闭