铁电存储器工作原理和器件结构
随着IT技术的不断发展,对于非易失性存储器的需求越来越大,读写速度要求越来越快,功耗要求越来越小,现有的传统非易失性存储器,如EEPROM、FLASH等已经难以满足这些需要了。
传统的主流半导体存储器可以分为两类:易失性和非易失性。易失性存储器包括静态存储器SRAM(Static Random Access Memory)和动态存储器DRAM(Dynamic Random Access Memory)。SRAM和DRAM在掉电的时候均会失去保存的数据。RAM类型的存储器易于使用、性能好,可是它们同样会在掉电的情况下失去所保存的数据。
非易失性存储器在掉电的情况下并不会丢失所存储的数据。然而所有的主流非易失性存储器均源自于只读存储器(ROM)技术。正如你所猜想的一样,被称为只读存储器的东西肯定不容易进行写入操作,而事实上是根本不能写入。所有由ROM技术研发出的存储器则都具有写入信息困难的特点。这些技术包括有EPROM、EEPROM和Flash。这些存储器不仅写入速度慢,而且只能有限次的擦写,写入时功耗大。
相对于其他类型的半导体技术而言,铁电存储器具有一些独一无二的特性。铁电存储器能兼容RAM的一切功能,并且和ROM技术一样,是一种非易失性的存储器。铁电存储器在这两类存储类型问搭起了一座跨越沟壑的桥梁——一种非易失性的RAM。同传统的非易失性存储器相比,铁电存储器具有功耗小、读写速度快、抗辐照能力强等优点,因此受到很大关注。
2 铁电存储器工作原理
当一个电场被加到铁电晶体时,中心原子顺着电场的方向在晶体里移动。当原子移动时,它通过一个能量壁垒,从而引起电荷击穿。内部电路感应到电荷击穿并设置存储器。移去电场后,中心原子保持不动,存储器的状态也得以保存。
因此,在一个外加电场下,铁电材料的极化特性会发生改变,当这个电场去掉以后,这个信息仍然能够保存。没有外加电场的情况下,极化特性有两种稳定的状态。图1是一个铁电材料电容的电滞回线,显示了铁电电容在所加不同电场的情况下的不同极性。其中,最重要的两个参数是剩余极化程度Pr,和矫顽场Ec。在没有电场强度的情况下,+/-Pr就表示了“0”、“1”两个状态。为了获得这两个状态,所加电场必须大于+/-Ec,因此,所需要的阈值电压也就确定了。
相比之下,铁电电容的漏电流没有EEPROM、FLASH之类的传统非易失性存储器那么重要,因为FeRAM的信息存储是由极化来实现的,而不是自由电子。
3 铁电材料简介
理想的铁电材料需要满足如下特点:
?介电常数小;
?合理的自极化程度(~5μC/cm2);
?高的居里温度(在器件的存储和工作温度范围之外);
?铁电材料厚度要薄(亚微米)以使矫顽场Ec较小;
?能够承受一定的击穿场强;
?内在开关速度要快(纳秒级别);
?数据的保持能力和持久能力要好;
?如果是军方使用的话,还要求能够抗辐照;
?化学稳定性要好;
?加工均匀性好;
?易于集成到CMOS工艺中去;
?对周围电路无不良影响;
?污染小等。
经过多年的研究,目前主流的铁电材料主要有以下两种:PZT、SBT。
PZT是锆钛酸铅PbZrxTil-xO3;SBT是钽酸锶铋Sr1-yBi2+xTa2O9。这两种材料的结构示意图如图2所示。
PZT是研究最多、使用最广泛的,它的优点是能够在较低的温度下制备,可以用溅射和MOCVD的方法来制备,具有剩余极化较大、原材料便宜、晶化温度较低的优点;缺点是有疲劳退化问题,还有含铅会对环境造成污染。
SBT最大的优点是没有疲劳退化的问题,而且不含铅,符合欧盟环境标准;但是它的缺点是工艺温度较高,使之工艺集成难度增大,剩余极化程度较小。两种材料的对比见表1。
目前从环境保护的角度来说,PZT已经被禁止使用了,但是从铁电存储器的性能和工艺集成的难易和成本的角度来说,SBT与PZT相比没有优势,因此目前关于铁电材料的选择还值得探讨。
4 铁电存储器的电路结构
铁电存储器的电路结构主要分成以下三种:2晶体管-2电容(2T2C)、1晶体管-2电容(
存储器相关文章:存储器原理
评论