电池与充电管理 选择与权衡因素
无论选择何种电池化学技术,遵循每一种电池化学技术的正确充电管理技术都是至关重要的。这些技术将确保电池在每一次和每个充电周期都能被充至最大容量,而不会降低安全性或缩短电池使用寿命。
NiCd / NIMH
在一个充电周期开始之前,并且尽可能在开始快速充电之前对镍镉 (NiCd) 电池和镍氢 (NiMH) 电池必须要进行检验和调节。如果电池电压或温度超出了允许的极限是不允许进行快速充电的。出于安全考虑,对所有“热”电池(一般高于 45℃)的充电工作都会暂时终止,直到电池冷却到正常工作温度范围内才会再次运转。要想处理一个“冷”电池(一般低于 10℃)或过度放电的电池(每节电池通常低于 1V),需要施加一个温和的点滴式电流。
当电池温度和电压正确时快速充电开始。通常用 1C 或更低的恒定电流对 NiMH 电池进行充电。一些 NiCd 电池可以用高达 4C 的速率进行充电。采用适当的充电终止来避免有害的过充电。
就镍基可充电电池而言,快速充电终止基于电压或温度。如图 1 所示,典型的电压终止方法是峰值电压探测,在峰值时即每个电池的电压在 0~-4mV 范围内,快速充电被终止。基于温度的快速充电终止方法是观察电池温度上升率 DT/Dt 来探测完全充电。典型的 DT/Dt 率为 1℃/每分钟。
图 1 镍电池化学技术的充电曲线
锂离子/锂聚合物电池
与 NiCd 电池和 NiMH 电池相类似,在快速充电之前尽可能检验并调节锂离子电池。验证和处理方法与上述使用的方法相类似。
如图 2 所示,验证和预处理之后,先用一个 1C 或更低的电流对锂离子电池进行充电,直到电池达到其充电电压极限为止。该充电阶段通常会补充高达 70% 的电池容量。然后用一个通常为 4.2V 的恒定电压对电池进行充电。为将安全性和电池容量,必须要将充电压稳定在至少 ±1%。在此充电期间,电池汲取的充电电流逐渐下降。就 1C 充电率而言,一旦电流电平下降到初始充电电流的 10-15% 以下充电通常就会终止。
图 2 锂离子电池化学技术充电曲线
开关模式与线性充电拓扑的对比
传统上来说,手持设备都使用线性充电拓扑。该方法具有诸多优势:低实施成本、设计简捷以及无高频开关的无噪声运行。但是,线性拓扑会增加系统功耗,尤其是当电池容量更高引起的充电率增加的时候。如果设计人员无法管理设计的散热问题,这就会成为一个主要缺点。
当 PC USB 端口作为电源时,则会出现其他一些缺点。当今在许多便携式设计上都具有 USB 充电选项,并且都可提供高达 500mA 的充电率。就线性解决方案而言,由于其效率较低,可以从 PC USB 传输的“电能”量就被大大降低,从而导致了充电时间过长。
这就是开关模式拓扑有用武之地的原因。开关模式拓扑的主要优势在于效率的提高。与线性稳压器不同,电源开关(或多个开关)在饱和的区域内运行,其大大降低了总体损耗。降压转换器中功率损耗的主要包括开关损耗(在电源开关中)以及滤波电感中的 DC 损耗。根据设计参数的不同,在这些应用中出现效率大大高于 95% 的情况就不足为奇了。
当人们听到开关模式这个术语时大多数人都会想到大型 IC、大 PowerFET 以及超大型电感! 事实上,虽然对于处理数十安培电流的应用而言确实是这样,但是对于手持设备的新一代解决方案而言情况就不一样了。新一代单体锂离子开关模式充电器采用了最高级别的芯片集成,高于 1MHz 的使用频率以最小化电感尺寸。图 1 说明了当今市场上已开始销售的此类解决方案。该硅芯片的尺寸不到 4 mm2,其集成了高侧和低侧 PowerFET。由于采用了 3MHz 开关频率,该解决方案要求一个小型 1uH 电感, 其外形尺寸仅为:2mm x 2.5mm x 1.2mm (WxLxH)。
充电器的选择http://www.elecfans.com/soft/49/50/2010/2010033072388.html
电池充电器工具使得设计人员选择正确的充电器的过程更轻松。图 3 是 TI 网站上提供的一种工具的示例。
图 3 电池充电器选择工具
评论