新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 40G/100G相干光通信原理与关键技术

40G/100G相干光通信原理与关键技术

作者:时间:2013-09-30来源:网络收藏
: 0px 0px 20px; WORD-SPACING: 0px; FONT: 14px/25px 宋体, arial; TEXT-TRANSFORM: none; COLOR: rgb(0,0,0); TEXT-INDENT: 0px; PADDING-TOP: 0px; WHITE-SPACE: normal; LETTER-SPACING: normal; webkit-text-size-adjust: auto; orphans: 2; widows: 2; webkit-text-stroke-width: 0px">  (3)可以使用电子学的均衡技术来补偿光纤中光脉冲的色散效应相的另一个主要优点是可以提高接收机的选择性。在直接探测中, 接收波段较大,为抑制噪声的干扰,探测器前通常需要放置窄带滤光片, 但其频带仍然很宽。在相干外差探测中,探测的是信号光和本振光的混频光,因此只有在中频频带内的噪声才可以进入系统,而其它噪声均被带宽较窄的微波中频放大器滤除。可见,外差探测有良好的滤波性能,这在相的应用中会发挥重大作用。此外,由于相干探测优良的波长选择性,相干接收机可以使频分复用系统的频率间隔大大缩小,即密集波分复用(DWDM),取代传统光复用技术的大频率间隔,具有以频分复用实现更高传输速率的潜在优势。

  如果外差检测相中的中频滤波器的传输函数正好与光纤的传输函数相反,即可降低光纤色散对系统的影响。

相干光通信的关键技术

  为了实现准确、有效、可靠的相干光通信,应采用以下关键技术:

  (1)光源技术

  相干光纤通信系统中对信号光源和本振光源的要求比较高,它要求光谱线窄、频率稳定度高。光源本身的诺线宽度将决定系统所能达到的最低误码率,应尽量减小,同时半导体激光器的频率对工作温度与注入电流的变化非常敏感,其变化量一般在几十GHz/℃和几十GHz/mA左右,因此,为使频率稳定,除注入电流和温度稳定外,还应采取其他稳频措施,使光频保持稳定。

  (2)接收技术

  相干光通信的接收技术包括两部分,一部分是光的接收技术,另一部分是中频之后的各种制式的解调技术。

  平衡接收法:在FSK制式中,由于半导体激光器在调制过程中,难免带有额外的幅度调制噪声,利用平衡接收方法可以减少调幅噪声。平衡法的主要思想是当光信号从光纤进入后,本振光经偏振控制以保证与信号的偏振状态相适应,本振光和信号光同时经过方向精合器分两路,分别输入两个相同的PIN光电检测器,使得两个光电检测器输出的是等幅度而反相的包络信号,再将这两个信号合成后,使得调频信号增加一倍,而寄生的调幅噪声相互抵消,直流成分也抵消,达到消除调幅噪声影响的要求。

  偏振控制技术:相干光通信系统接收端必须要求信号光和本振光的偏振同偏,才能取得良好的混频效果,提高接收质量。信号光经过单模光纤长距离传输后,偏振态是随机起伏的,为了解决这个问题,提出了很多方法,如采用保偏光纤、偏振控制器和偏振分集接收等方法。光在普通光纤中传输时,相位和偏振面会随机变化,保偏光纤就是通过工艺和材料的选择使得光相位和偏振保持不变的特种光纤,但是这种光纤损耗大,价格也非常昂贵;偏振控制器主要是使信号光和本振光同偏,这种方法响应速度比较慢,环路控制的要求也比较高;偏振分集接收主要是利用信号光和本振光混频后,由偏振分束元件将混合光分成两个相互垂直的偏振分量,本振光两个垂直偏振分量由偏振控制器控制,使两个分量功率相等,这样当信号光中偏振随机起伏也许造成其中一个分支中频信号衰落,但另一个分支的中频信号仍然存在,所以该系统最后得到的解调信号几乎和信号光的偏振无关,该技术响应速度比较快,比较实用,但实现比较复杂。

  (3)外光调制技术

  由于半导体激光器光载波的某一参数直接调制时,总会附带对其他参数的寄生振荡,如ASK直接调制伴随着相位的变化,而且调制深度也会受到限制。另外,还会遇到频率特性不平坦及张迟振荡等问题。因此,在相干光通信系统中,除FSK可以采用直接注入电流进行频率调制外,其他都是采用外光调制方式。

  (4)非线性串扰控制技术

  由于在相干光通信中,常采用密集频分复用技术。因此,光纤中的非线性效应[14]可能使相干光通信中的某一信道的信号强度和相位受到其他信道信号的影响,而形成非线性串扰。

  结束语

通信相关文章:通信原理


激光器相关文章:激光器原理


关键词: 40G/100G 干光通信

评论


相关推荐

技术专区

关闭