新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 理解ADC误差对系统性能的影响(二)

理解ADC误差对系统性能的影响(二)

作者:时间:2013-10-15来源:网络收藏
RGIN: 0px 0px 20px; WORD-SPACING: 0px; FONT: 14px/25px 宋体, arial; TEXT-TRANSFORM: none; COLOR: rgb(0,0,0); TEXT-INDENT: 2em; PADDING-TOP: 0px; WHITE-SPACE: normal; LETTER-SPACING: normal; webkit-text-size-adjust: auto; orphans: 2; widows: 2; webkit-text-stroke-width: 0px">对于那些只作一次性温度校准的系统,需要重点留意一下漂移指标。如果已校准了初始失调但温度又发生了改变,因漂移的关系又会引入新的误差,这使校准的效果被减弱。例如,假设在温度X下进行了一次转换。随后的某个时间,温度变化了10°C,又作了完全相同的另一次测量。两次读取的转换结果会有差异,这会使用户对系统的可重复性也就是可靠性产生怀疑。

有很多原因促使制造商没有给出最大界限。其中之一便是成本的增加。漂移测试需要特殊的平台,并且还要在测试流程中增加额外的工序(这将导致额外的制造成本),以确保所有器件不超出最大漂移界限。

增益漂移的问题更多,尤其是对于那些采用内部基准的器件。这时候,基准的漂移可以一并包含于增益漂移参数中。当采用外部基准时,IC的增益漂移一般比较小,比如0.8ppm/°C。这样,±10°C的温度变化将会造成±8ppm的漂移。举例来讲,12位性能等价于244ppm (1/4096 = 0.0244% = 244ppm)。因此,±8ppm的漂移所造成的误差远低于12位系统中的一个LSB。

交流特性

有些只在输入信号接近于直流时能很好地工作。另外一些则能很好地处理从直流到Nyquist特频率的信号。仅有DNL和INL符合系统要求并不能说明转换器能够同样合格地处理交流信号。DNL和INL是在直流测试的。要掌握其交流性能就必须了解交流指标。在产品规格书中有电气参数表和典型工作特性,从中你可以找到有关交流性能的线索。需要考察的关键指标有信号–噪声比(SNR),信号–噪声加失真比(SINAD),总谐波失真(THD),以及无杂散动态范围(SFDR)。首先我们来看一看SINAD或SNR。SINAD定义为输入正弦波信号的RMS值与转换器噪声的RMS值(从直流到Nyquist特频率,包括谐波[总谐波波失真]成分)。谐波发生于输入频率的倍数位(图9)。SNR类似于SINAD,只是它不包含谐波成分。因此,SNR总是好于SINAD。SINAD和SNR一般以dB为单位。

其中N是转换器的位数。对于理想的12位转换器,SINAD为74dB。这个方程可重写为N的表达式,新的表达式揭示了能够获得的信息的位数与RMS噪声的函数关系:

这个方程就是等效位数的定义,即ENOB。

图9. FFT图显示出的交流性能

值得注意的是SINAD和输入频率有关。随着频率向Nyquist上限逼近,SINAD逐渐下降。如果规格书中的指标是在相对于Nyquist频率较低的频率下测得,在接近Nyquist频率时性能有可能变得很差。在规格书中的典型工作特性中可以找到ENOB曲线,可以观察到随着频率的增加ENOB下降,主要是由于随着输入频率的增加THD逐渐变差。例如,如果在感兴趣的频率SINAD的最小值为68dB,那么你可获得的ENOB值为11。也就是说,由于转换器的噪声和失真,你丢失了1位信息。这也意味着你的12位转换器最多只能达到0.05%的精度。记住INL是一项直流指标;ENOB是一项有关转换器对于交流信号的非线性性能指标。

SNR是不考虑失真成分的信号–噪声比。SNR反映了转换器的噪声背景。随着输入频率的增加SNR可能会急剧下降,这说明该转换器不是为该频率的应用而设计。改善SNR的一个办法是过采样,这种方法提供了一定的处理增益。过采样以远高于信号频率的速度进行采样,以此来降低转换器的噪声背景。这种方法将噪声谱扩展到更宽的频域内,这样就有效降低了一定频段内的噪声。两倍率的过采样可将噪声背景降低3dB。

SFDR定义为FFT图中,频域内输入正弦波的RMS值与最高的杂散信号的RMS值之比,一般以dB为单位。对于某些要求动态范围尽可能大的通信应用,SFDR尤为重要。杂散信号妨碍了ADC对于小输入信号的转换,因为失真信号可能会比有用信号大很多。这就限制了ADC的动态范围。频域内出现一个大的杂散信号可能对SNR不会有明显影响,但会显著影响SFDR。

小结



关键词: ADC 系统性能

评论


相关推荐

技术专区

关闭