新闻中心

EEPW首页 > 汽车电子 > 设计应用 > 基于NXP i.MX8QM的AI影像辨识与车辆识别方案

基于NXP i.MX8QM的AI影像辨识与车辆识别方案

作者:时间:2022-08-18来源:大联大收藏

现今自动化驾驶以及辅助驾驶越来越普遍化的情况下,对于edge computing的需求也越来越提升。

本文引用地址:http://www.amcfsurvey.com/article/202208/437471.htm

如何帮助客户开发应用程式成为新的课题。

品佳在去年提出了eIQ edge运算的解决方案,详细请参考:

https://www.wpgdadatong.com/tw/solution/detail?PID=5260

今年2020,在此介绍新的eIQ 2.0,大幅提升了效率以及各类使用方式。

此方案基于 原生 BSP 5.4.24_2.1.0做开发,加入Python的元素,并且可使用GPU/NPU做 类神经网路的运算,使得效率以及应用场景皆更完整。                                                                                                                                          

首先使用pip安装python压缩包:

使用影像识别的范例为: 以经典图片grace_hopper.bmp做分别:

2019年初版eIQ:

Inference time约需330ms.

2020年eIQ2.0 (PyeIQ):

1660807421573306.jpg

可以看出以GPU运算的能力, 相同使用 mobilenet model, 使用TensorflowLite只需要约10ms, 速度及效率快上30倍!!

另外eIQ2.0提供即时影像输入以及视频辨识的功能:

使用台湾实景街道拍摄的影片做物件识别的专案

可以看出实测效能为30ms。

此方案提供下列NNAPI表供各个平台以及算法做开发






此方案整合各家不同算法并提供对应的API供客户做开发使用。

并且搭配上 4核A53+2核A72+2颗内包GC7000XSVX GPU,可以做到利用GPU运算以及图像技术,且稳定提供系统资源。

目前已有数家客户以此方案开发车用市场的应用。

品佳FAE团队将以此方案为基础,协助所有客户开发相关AI领域的应用。

► 场景应用图

sceneryUrl

► 方案方块图

funcUrl

► 核心技术优势

1. Automotive Gade, ASIL-B

2. 16x Vec4-Shader GPU, 32 compute units OpenGL® ES 3.2 and Vulkan® support Tessellation and Geometry Shading

3. 2xARM A72 core + 4 A53 core

4. MIPI CSI可同时接入两个高清摄像头

5. 品佳提供跨平台(PC to I.MX)的ML(Machine Learning)应用程式

► 方案规格

Python 3.7

TensorFlow 2.1

TensorFlowLite 2.1

OpenCV 4.2.0

ArmNN 19.08



评论


相关推荐

技术专区

关闭