诠释AI(人工智能)的两大特征:黑盒子与不确定性
高焕堂 (台湾VR产业联盟主席,厦门VR/AR协会荣誉会长兼顾问)
摘 要:AI擅长寻找大数据中的规律,其亮丽的表现已经令人类叹为观止。在学习AI时,如果您能深刻掌握AI的黑盒子(Black box)和不确定性(Uncertainty),将更能发挥AI的专长来帮助人类。
关键词:AI;黑盒子;不确定性
1 AI的长处
当今基于深度学习的AI(人工智能)非常擅长于:从大数据的复杂关系中寻找出人类难以得知的规则(规律性或法则)。人们对周遭大环境的隐藏规律太多未知,AI可以协助人们去探索未知,补足人类的短处。
那么,人们为什么需要AI的助力呢? 因为人们常常只能观察到小数据,只能归纳出局部性的规律,然后从各个局部性规律中,抽象出原则(Principle),然后掌握原则,并相信它(原则)就代表全体规律,乃是恒久不变之“道”。
如今,AI逐渐打破了这项数千年来的迷思。AI迅速掌握全体大数据,迅速找出全体新规律,颠覆人类所相信的原则。于是,擅于借助于AI者就可得到新规律来引领大潮流。反之,不擅于借助AI者,坚守旧原则,就很可能成为没落贵族了。
虽然AI擅长从“小范围大数据”中找规律;但是人类则擅长在“小数据”中找规律,又能举一反三,应用于“大范围”上。两者互补且相辅相成。
例如,在商业竞争环境中,AI可以帮企业取得相关产业的全域最佳解(Global optima),轻易地打败传统(无AI)的企业竞争者,因为这些传统企业只能凭借人的视野和经验,只能取得局部最佳解(Localoptima)。
AI有两项特性:①黑箱式推理;②不确定行为。当 今AI技术是基于算法和大数据相关性(Correlation)而进行归纳推理,属于低阶因果关系的推理(如图1)。
基于底层的算法,搭配归纳推理能力,AI能够从大数据的复杂关系中找出规则(规律性或法则),并进行预测(如图2)。
依循AI自己找出的规则,就能针对应用资料来进行预测或判断,并且输出结果(如图3)。
由于AI寻觅出来的规则,只能以成千上亿个数字表示,成为无(文)字天书。让人们对其判断理由无从理解(Incomprehensibility),且对其推理过程无法解释(Inexplainability),所以称之为:黑盒子(如图4)。
同时,常常因为训练数据的偏差或算法参数设定等,都会让AI产生意外的结果,让人们捉摸不定其行为,通称为:AI不确定性(Uncertainty of AI)。
3 AI的两层规则(Rules)
关于AI与规则的关系,首先从AI的算法说起,什么是AI的算法呢?
“算法”是人们给予AI机器的规则(Rules)。这种规则是妈妈层级的规则(Meta-rules),成为AI的底层框架,此框架支撑AI的归纳性能力,能够从大数据中找出规则(规律性或法则),就生出儿女层级的规则(如图5)。
因为是归纳法,所以妈妈如何生出儿女,其过程是黑盒子。当AI训练完毕,投入实际应用时,是依循儿女层级的规则而执行。所以,人们常常无法充分掌控AI的行为。
也许您会认为算法能充分掌控AI的行为。其实不然,掌控得了妈妈,并不一定能掌控其儿女,因此人们常常无法充分理解和解释AI行为的背后理由。
当今的AI神经网络(NN)受人脑的启发,一个神经网络类似于大脑中神经元的连接系统,由成千上万个微小的神经元连接,经由一系列数学计算,形成数百万个复杂而微小变化的连结,人类无法精准地确定正在发生的连接结果,只会得到1个输出的结果。
这种“输入数据和答案之间的不可观察的空间”,通称为黑盒子。在AI领域常拿这个名词来描述神经网络的内心深处如何在“暗处”运作的神秘景象。对于人类来说,至今仍然太难理解了。
4 举例说明:从传统IT迈向AI
4.1 传统IT:人们把规则写入电脑
人们最常见的迷思是:延续传统IT思维,想把自己心中的规则输入给AI。例如,当您想让AI来进行二进位的加法运算——如(011)和(011)两数相加。在传统IT里,您会利用程序(如Python)的“编程逻辑”来把心中的规则表达于Python程序码里,经过编译(Compile)、连结(Link)之后,载入到电脑里。例如,计算二进位的 (011)和(011)相加时,您会运用二进位加法的基本规则是:个位数1和1相加,得到0,且进位 1。下一位则是:1和1和进位1相加,得到1,且进位 1。再下一位则是:0和0和进位1相加,得 到1。于是,得到结果是:二进位的110。然后,写成Python程序码来表达之:
此时您需要编程技能和严密的程序逻辑。所以,在传统小数据时代的IT逻辑编程,是让人类表达其心中的规则,以程序码叙述出来,植入到电脑中,让电脑替人类快速执行(规则)。所以,您需要努力学习编程;然而那是传统IT逻辑思维,不是当今AI的逻辑思维。
4.2 AI:自己找出规则(规律性或法则)
基于大数据的AI逻辑思维是:人类只需要给它(电脑)答案,由它自己归纳出规则。例如二进位加法:
基于大数据的AI逻辑思维是:人类只需要给它(电脑)答案,由它自己归纳出规则。例如二进位加法如图6。
人们只要给电脑考卷(即输入值011和011),并且给予答案(即输出值110)就可以了。AI能自己归纳出规则,并计算出非常接近正确的答案(如图7)。
AI计算出来的答案:[0.98, 0.93, 0.09],只是非常接近正确答案:[1,1,0]。AI自己以权重(数字)来表达它自己归纳出来的规则(如图8)。
在传统小数据时代的IT逻辑编程,是让人类表达其心中的规则,以程序码叙述出来。如今的AI,并不需要人类去表达心中的规则,反而AI基于大数据而能归纳出比人类更优质、可信的规则。
5 细说AI的“不确定性”
5.1 AI的特质:“不确定”行为
如前文所述,AI的特质是非常清晰的:它依赖大数据表层(浅层)的相关性,作为归纳法推理的基础。而归纳性推理是一种“黑盒子”思维,只有结论而没有推理过程的。
当AI训练完毕,投入实际应用时,是依循AI自己归纳出来的规则而执行。所以,人们常常无法充分理解和解释AI行为的理由。AI自己讲不清楚,甚至AI专家也讲不清楚。这是人们对于AI行为的不确定感。
于此也推荐您听听Janelle Shane于2019年4月在Ted上演讲,主题是:AI的危险比你想象的更怪异(The dangerof AI is weirder than you think)[1]。
为了有效提升人们对A I的信赖度(即降低不确定感),许多专家联合起来筹组了联盟:A I不确定性联盟(The Association for Uncertainty in ArtificialIntelligence,简称AUAI)[2]。并且定期召开大型会议,研讨各种可能的解决途径。
5.2 AI不擅长“不确定性”的事物
俗语说,优点的另一面往往是缺点。AI擅长于归纳性推理(考古),迅速找出事物幕后蕴藏的规律性。对于没有经历过的未知事物通常是无法理解和判断的。此外,因为AI没有拟定(对未来的)假设或假说(Hypothesis)的能力,而且它又没有关于未来可变事物的数据。所以,AI对中长期的未来事物变迁的预测能力却非常薄弱。这些未知的、未来变迁的不确定的部分,都是AI不擅长的。
在AI时代里,AI负责考古和探索眼前事实;人类观想未来和拟定假设性方案。AI的能力与人类能力,形成互补,相辅相成,共同迈向人机共舞的社会。
参考文献
[1] AI报道.从冰激凌实验看懂AI(2019-12-10)[R/OL].https://baijiahao.baidu.com/s?id=1652513012407958900&wfr=spider&for=pc.
[2] AUAI[R/OL].http://www.auai.org/.
本文来源于科技期刊《电子产品世界》2020年第02期第88页,欢迎您写论文时引用,并注明出处。
评论