常见光无源器件种类及原理
光无源器件是光纤通信设备的重要组成部分。它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。
光无源器件是光纤通信设备的重要组成部分。它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。在光纤有线电视中,其起着连接、分配、隔离、滤波等作用。实际上光无源器件有很多种,限于篇幅,此处仅讲述常用的几种——光分路器、光衰减器、光隔离器、连接器、跳线、光开关。
一、光纤活动连接器
1. 活动连接器
光纤活动连接器是实现光纤之间活动连接的无源光器件,它还有将光纤与有源器件、光纤与其它无源器件、光纤与系统和仪表进行连接的功能。活动连接器伴随着光通信的发展而发展,现在已形成门类齐全、品种繁多的系统产品,是光纤应用领域中不可缺少的、应用最广泛的基础元件之一。
尽管光纤(缆)活动连接器在结构上千差万别,品种上多种多样,但按其功能可以分成如下几部分:连接器插头、光纤跳线、转换器、变换器等。这些部件可以单独作为器件使用,也可以合在一起成为组件使用。实际上,一个活动连接器习惯上是指两个连接器插头加一个转换器。
(1) 连接器插头
使光纤在转换器或变换器中完成插拔功能的部件称为插头,连接器插头由插针体和若干外部机械结构零件组成。两个插头在插入转换器或变换器后可以实现光纤(缆)之间的对接;插头的机械结构用于对光纤进行有效的保护。插针是一个带有微孔的精密圆柱体,其主要尺寸如下:
外径:Ф2.499±0.0005mm
外径不圆度0.0005mm
微孔直径:Ф126±0.5μm
微孔偏心量1μm
微孔深度:4mm 或 10mm
插针外圆柱体光洁度:14
端面曲率半径:20-60mm
插针的材料有不锈钢、全陶瓷、玻璃和塑料几种。现在市场上用得最多的是陶瓷,陶瓷材料具有极好的温度稳定性,耐磨性和抗腐蚀能力,但价格也较贵。塑料插头价格便宜,但不耐用。市场上也有较多插头在采用塑料冒充陶瓷,工程人员在购买时请注意识别。
插针和光纤相结合成为插针体。插针体的制作是将选配好的光纤插入微孔中,用胶固定后,再加工其端面,插头端面的曲率半径对反射损耗影响很大,通常曲率半径越小,反射损耗越大。插头按其端面的形状可分为3类:PC型、SPC型、APC型。PC型插头端面曲率半径最大,近乎平面接触,反射损耗最低;SPC型插头端面的曲率半径为20mm,反射损耗可达45dB,插入损耗可以做到小于0.2dB;反射损耗最高的是APC型,它除了采用球面接触外,还把端面加工成斜面,以使反射光反射出光纤,避免反射回光发射机。斜面的倾角越大,反射损耗越大,但插入损耗也随之增大,一般取倾角为8°±0.2°,此时插入损耗约0.2dB,反射损耗可达60dB,在CATV系统中所有的光纤插头端面均为APC型。要想保证插针体的质量,光纤的几何尺寸必须达到下列要求:光纤外径比微孔直径小0.0005mm;光纤纤芯的不同轴度小于0.0005mm。因此,插针和光纤以及两者的选配对连接器插头的质量影响极大,也是连接器插头质量好坏的关键。不同厂家的产品工艺水平不一样,因而差别就很大,在实际应用中,本人也曾多次碰到一个插头插损1dB以上的情况,而正常值一般小于0.3dB。在工程应用中,不要小看一个小小的插头,质量低劣的插头对系统的影响是和很大的;在选购时一定要选用信誉高、知名厂家的产品。
(2)跳线
将一根光纤的两头都装上插头,称为跳线。连接器插头是跳线的特殊情况,即只在光纤的一头装有插头。在工程及仪表应用中,大量使用着各种型号、规格的跳线,跳线中光纤两头的插头可以是同一型号,也可以是不同的型号。跳线可以是单芯的,也可以是多芯的。跳线的价格主要由接头的质量决定。因而价格也相差较大。在选用跳线时,本着质优价廉去选是不错,但一定不要买质次价低的产品。
(3)转换器
把光纤接头连接在一起,从而使光纤接通的器件称为转换器,转换器俗称法兰盘。在CATV系统中用得最多的是FC型连接器;SC型连接器因使用方便、价格低廉,可以密集安装等优点,应用前景也不错,除此地外,ST型连接器也有一定数量的应用。
a.FC型连接器。 FC型连接器是一种用螺纹连接,外部元件采用金属材料制作的圆形连接器。它是我国采用的主要品种,在有线电视光网络系统中大量应用;其有较强的抗拉强度,能适应各种工程的要求。
b.SC型连接器。SC型连接器外壳采用工程塑料制作,采用矩形结构,便于密集安装;不用螺纹连接,可以直接插拔,操作空间小。实用于高密集安装,使用方便。
c.ST型连接器。 ST型连接器采用带键的卡口式锁紧结构,确保连接时准确对中。
这三种连接器虽然外观不一样,但核心元件--套筒是一样的。套筒是一个加工精密的套管(有开口和不开口两种),两个插针在套筒中对接并保证两根光纤的对准。其原理是:以插针的外圆柱面为基准面,插针与套筒之间为紧配合;当光纤纤芯外圆柱面的同轴度、插针的外圆柱面和端面、以及套筒的内孔加工的非常精密时,两根插针在套筒中对接,就实现了两根光纤的对准。
下面详细讲一下套筒。套筒有两种结构:开口套筒与不开口套筒。 a.开口套筒。开口套筒在连接器中使用最普遍,其主要尺寸为 :外径:Ф3.2±0.01mm,内径Ф2.5±0.02mm,内孔光洁度:14;弹性形变:小于0.0005mm,插针插入或拔出套筒的力:3.92-5.88N。开口套筒采用高弹性的材料,如磷青铜、铍青铜和氧化锆陶瓷制作,当插针插入套筒之后,套筒对插针的夹持力应保持恒定,这三种材料制作的套筒都在应用,但以铍青铜和氧化锆陶瓷居多。 b.不开口套筒。不开口套筒在连接器中应用较少,在光纤与有源器件的连接中应用较多,其外型尺寸与开口套筒基本上一致。不同之处在于它的内孔直径为ф2.5+0.0005mm,即比插针的外径大1μm;既让插针能够顺利插入,同时间隙也不能太大,保证光纤与有源器件(如激光管、探测器)连接时,重复性、互换性达到要求的指标。
上述三种型号的转换器,只能对同型号的插头进行连接,对不同型号插头的连接,就需要下面三种转换器。即:FC/SC型转换器--用于FC与SC型插头互连;FC/ST型转换器--用于FC与ST型插头互连,SC/ST型转换器--用于SC与ST型插头互连。市场上的法兰盘价格高低之间相关数倍,其实讲完这些,读者也应该明白原因在何处。
(4)变换器
将某一种型号的插头变换成另一型号插头的器件叫做变换器,该器件由两部分组成,其中一半为某一型号的转换器,另一半为其它型号的插头。使用时将某一型号的插头插入同型号的转换器中,就变成其它型号的插头了。在实际工程应用中,往往会遇到这种情况,即手头上有某种型号的插头,而仪表或系统中是另一型号的转换器,彼此配不上,不能工作。如果备有这种型号的变换器,问题就迎刃而解了。对于FC、SC、ST三种连接器,要做到能完全互换,有下述6种变换器。SC-FC,将SC插头变换成FC插头;ST-FC将ST插头变换成FC插头;FC-SC将FC插头变换成SC插头;FC-ST将FC插头变换成ST插头,SC-ST将SC插头变换成ST插头;ST-SC将ST插头变换成SC插头。
实际上光纤的活动连接除了采用上述的活动连接器外,如果是紧急抢修断光缆,而手头又没有熔接机,通常采用一种机械连接头(也称快速接线子)处理。其利用一个玻璃微细管来定位,用一套机械装置来紧固光纤,使用时先切开光纤,对端面进行清洁处理,光纤端头保留6-8mm,然后将光纤的两个端面在玻璃微细管的中央对准后夹紧,拧紧两端的螺帽即可实现光纤的可靠连接。这种机械连接头的长度约40mm,直径不超过5.7mm,平均插入损耗小于0.4dB,反射损耗大于50dB,抗拉强度大于1.25kg,更重要的是装配时间极短,确实是一种快速抢修必备工具。
2.光纤活动连接器的表征指标
(1) 插入损耗
插入损耗定义为光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的比率的分贝比。其表达式为IL=-10loy PI/PO(dB),其中PO-输入端的光功率,PI-输出端的光功率。插入损耗越小越好。从理论上讲影响插入损耗的主要因素有以下几种:纤芯错位损耗、光纤倾斜损耗、光纤端面间隙损耗、光纤端面的菲涅耳反射损耗、纤芯直径不同损耗、数值孔径不同损耗。不管那种损耗都和生产工艺有关,因此生产工艺技术是关键。
(2) 回波损耗
回波损耗又称反射损耗,是指在光纤连接处,后向反射光相对于输入光的比率的分贝数,其表达式为RL=-10loy Pr/PO dB,其中PO-输入光功率,Pr-后向反射光功率。 反射损耗愈大愈好,以减少反射光对光源和系统的影响。改进回波损耗的途径只有一个,即将插头端面加工成球面或斜球面。球面接触,使纤芯之间的间隙接近于“0”,达到“物理接触”,使端面间隙和多次反射所引起的插入损耗得以消除,从面使后向反射光大为减少。斜球面接触除了实现光纤端面的物理接触以外,还可以将微弱的后向光加以旁路,使其难以进入原来的纤芯,斜球面接触可以使回波损耗达到60dB以上,甚至达到70dB。关于插头的类型定义前面已述,此处不多讲。在CATV系统中都选用APC型端面的接头,这种接头的反射损耗完全可以达到系统要求,当然加工工艺不好的APC接头反射损耗比PC型接头的还要低也是可能的。
(3) 重复性
重复性是指对同一对插头,在同一只转换器中,多次插拔之后,其插入损耗的变化范围,单位用dB表示。插拔次数一般取5次,先求出5个数据的平均值,再计算相对于平均值的变化范围。性能稳定的连接器的重复性应小于±0.1dB。重复性和使用寿命是有区别的,前者是在有限的插拔次数内,插入损耗的变化范围;后者是指在插拔一定次数后,器件就不能保证完好无损了。
(4) 互换性
互换性是指不同插头之间或者同转换器任意置换之后,其插入损耗的范围。这个指标更能说明连接器性能的一致性。质量较好的连接器,其互换性应能控制在±0.15dB以内。
重复性和互换性考核连接器结构设计和加工工艺的合理与否,也是表明连接器实用化的重要标志。质量好的跳线和转换器,其重复性和互换性是合格的,即使是不同厂家的产品在一起使用;质量低劣的产品即使是同一厂家的产品也很差。更不用说不同厂家产品混合使用的情况。
3、活动连接器的使用
活动连接器一般用于下述位置:①光端机到光配接箱之间采用光纤跳线;②在光配线箱内采用法兰盘将光端机来的跳线与引出光缆相连的尾纤连通;③各种光测试仪一般将光跳线一端头固定在测试口上另一端与测试点连接;④光端机内部采用尾纤与法兰盘相连以引出引入光信号;⑤光发射机内部,激光器输出尾纤通过法兰盘与系统主干尾纤相连;⑥光分路器的输入、输出尾纤与法兰盘的活动连接。
二、光分路器
与同轴电缆传输系统一样,光网络系统也需要将光信号进行耦合、分支、分配,这就需要光分路器来实现,光分路器是光纤链路中最重要的无源器件之一,是具有多个输入端和多个输出端的光纤汇接器件,常用M×N来表示一个分路器有M个输入端和N个输出端。在光纤CATV系统中使用的光分路器一般都是1×2、1×3以及由它们组成的1×N光分路器。
1.光分路器的分光原理
光分路器按原理可以分为光纤型和平面波导型两种,光纤熔融拉锥型产品是将两根或多根光纤进行侧面熔接而成;光波导型是微光学元件型产品,采用光刻技术,在介质或半导体基板上形成光波导,实现分支分配功能。这两种型式的分光原理类似,它们通过改变光纤间的消逝场相互耦合(耦合度,耦合长度)以及改变光纤纤半径来实现不同大小分支量,反之也可以将多路光信号合为一路信号叫做合成器。熔锥型光纤耦合器因制作方法简单、价格便宜、容易与外部光纤连接成为一整体,而且可以耐孚机械振动和温度变化等优点,目前成为市场的主流制造技术。
熔融拉锥法就是将两根(或两根以上)除去涂覆层的光纤以一定的方法靠扰,在高温加热下熔融,同时向两侧拉伸,最终在加热区形成双锥体形式的特殊波导结构,通过控制光纤扭转的角度和拉伸的长度,可得到不同的分光比例。最后把拉锥区用固化胶固化在石英基片上插入不锈铜管内,这就是光分路器。这种生产工艺因固化胶的热膨胀系数与石英基片、不锈钢管的不一致,在环境温度变化时热胀冷缩的程度就不一致,此种情况容易导致光分路器损坏,尤其把光分路放在野外的情况更甚,这也是光分路容易损坏得最主要原因。对于更多路数的分路器生产可以用多个二分路器组成。
2.光分路器的常用技术指标
(1) 插入损耗
光分路器的插入损耗是指每一路输出我相对于输入光损失的dB数,其数学表达式为:Ai=-10lg Pouti/Pin ,其中Ai是指第i个输出口的插入损耗;Pouti是第i个输出端口的光功率;Pin是输入端的光功率值。
(2) 附加损耗
附加损耗定义为所有输出端口的光功率总和相对于输入光功率损失的dB数。值得一提的是,对于光纤耦合器,附加损耗是体现器件制造工艺质量的指标,反映的是器件制作过程的固有损耗,这个损耗越小越好,是制作质量优劣的考核指标。而插入损耗则仅表示各个输出端口的输出功率状况,不仅有固有损耗的因素,更考虑了分光比的影响。因此不同的光纤耦合器之间,插入损耗的差异并不能反映器件制作质量的优劣。对于1*N单模标准型光分路器附加损耗如下表所示:
(3) 分光比
分光比定义为光分路器各输出端口的输出功率比值,在系统应用中,分光比的确定是根据实际系统光节点所需的光功率的多少,确定合适的分光比(平均分配的除外),光分路器的分光比与传输光的波长有关,例如一个光分路在传输1.31 微米的光时两个输出端的分光比为50:50;在传输1.5μm的光时,则变为70:30(之所以出现这种情况,是因为光分路器都有一定的带宽,即分光比基本不变时所传输光信号的频带宽度)。所以在订做光分路器时一定要注明波长。
(4) 隔离度
隔离度是指光分路器的某一光路对其他光路中的光信号的隔离能力。在以上各指标中,隔离度对于光分路器的意义更为重大,在实际系统应用中往往需要隔离度达到40dB以上的器件,否则将影响整个系统的性能。
另外光分路器的稳定性也是一个重要的指标,所谓稳定性是指在外界温度变化,其它器件的工作状态变化时,光分路器的分光比和其它性能指标都应基本保持不变,实际上光分路器的稳定性完全取决于生产厂家的工艺水平,不同厂家的产品,质量悬殊相当大。在实际应用中,本人也确实碰到很多质量低劣的光分路器,不仅性能指标劣化快,而且损坏率相当高,作于光纤干线的重要器件,在选购时一定加以注意,不能光看价格,工艺水平低的光分路价格肯定低。
三、光衰减器
光衰减器是一种非常重要的纤维光学无源器件,是光纤CATV中的一个不可缺少的器件。到目前为止市场上已经形成了固定式、步进可调式、连续可调式及智能型光衰减器四种系列。
1、衰减器的衰减原理
光衰减器的类型很多,不同类型的衰减器分别采用不同的工作原理。
① 位移型光衰减器
众所周知,当两段光纤进行连接时,必须达到相当高的对中精度,才能使光信号以较小的损耗传输过去。反过来,如果将光纤的对中精度做适当的调整,就可以控制其衰减量。位移型光衰减器就是根据这个原理,有意让光纤在对接时,发生一定的错位。使光能量损失一些,从而达到控制衰减量的目的,位移型光衰减器又分为两种:横向位移型光衰减器、轴向位移型光衰减器。横向位移型光衰减器是一种比较传统的方法,由于横向位移参数的数量级均在微米级,所以一般不用来制作可变衰减器,仅用于固定衰减器的制作中,并采用熔接或粘接法,到目前仍有较大的市场,其优点在于回波损耗高,一般都大于60dB。轴向位移型光衰减器在工艺设计上只要用机械的方法将两根光纤拉开一定距离进行对中,就可实现衰减的目的。这种原理主要用于固定光衰减器和一些小型可变光衰减器的制作。
② 薄膜型光衰减器
这种衰减器利用光在金属薄膜表面的反射光强与薄膜厚度有关的原理制成。如果玻璃衬底上蒸镀的金属薄膜的厚度固定,就制成固定光衰减器。如果在光纤中斜向插入蒸镀有不同厚度的一系列圆盘型金属薄腊的玻璃衬底,使光路中插入不同厚度的金属薄膜,就能改变反射光的强度,即可得到不同的衰减量,制成可变衰减器。
③ 衰减片型光衰减器
衰减片型光衰减器直接将具有吸收特性的衰减片固定在光纤的端面上或光路中,达到衰减光信号的目的,这种方法不仅可以用来制作固定光衰减器,也可用来制作可变光衰减器。
评论