新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 桥式整流电路分析

桥式整流电路分析

作者:时间:2018-08-13来源:网络收藏

学过模电的人应该对于桥式电路都应该不陌生,在我学模电的时候对于桥式电路印象最深刻的就是它的四个。 在我们的日常设计中,桥式电路也是基本上必不可少的,因为器对输入正弦波的利用效率比半波整流高一倍。是交流电转换成直流电的第一个步骤。

本文引用地址:http://www.amcfsurvey.com/article/201808/386436.htm

今天就让我们重温下当初的电路:

桥式整流电路的工作原理如下:

输入电压u2为正半周时,对D1、D3加正向电压,Dl、D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成u2、D1、Rfz 、D3通电回路,在Rfz 上形成上正下负的半波整流电压;

输入电压u2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成u2、D2、Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。如此重复下去,结果在Rfz 上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图还不难看出,桥式电路中每只承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。桥式整流是对半波整流的一种改进。

分析1:电源滤波的过程分析:电源滤波是在负载RL两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。

波形形成过程:输出端接负载RL时,当电源供电时,向负载提供电流的同时也向电容C充电,充电时间常数为τ充=(Ri∥RLC)≈RiC,一般Ri〈〈RL,忽略Ri压降的影响,电容上电压将随u2迅速上升,当ωt=ωt1时,有u2=u0,此后u2低于u0,所有二极管截止,这时电容C通过RL放电,放电时间常数为RLC,放电时间慢,u0变化平缓。当ωt=ωt2时,u2=u0,ωt2后u2又变化到比u0大,又开始充电过程,u0迅速上升。ωt=ωt3时有u2=u0,ωt3后,电容通过RL放电。如此反复,周期性充放电。由于电容C的储能作用,RL上的电压波动大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。

分析2:计算滤波电容的容量和耐压值选择

电容滤波整流电路输出电压Uo在√2U2~0.9U2之间,输出电压的平均值取决于放电时间常数的大小。

电容容量RLCR(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步近似为Uo≈1.2U2整流管的最大反向峰值电压URM=√2U2,每个二极管的平均电流是负载电流的一半。



评论


相关推荐

技术专区

关闭