关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 智能配电网之分布式电源并网技术

智能配电网之分布式电源并网技术

作者:时间:2012-08-06来源:网络收藏

标签:智能电网 并网

本文引用地址:http://www.amcfsurvey.com/article/201220.htm

智能电网区别于传统电网的一个根本特征是支持(Dist ributed Energy Resources ,DER) 的大量接入。满足DER 并网的需要,是智能电网提出并获得迅速发展的根本原因。本讲介绍的基本概念及其,作为读者学习、了解智能电网技术的基础知识。

1 分布式电源的概念

分布式电源指小型(容量一般小于50 MW) 、向当地负荷供电、可直接连到配电网上的电源装置。它包括分布式发电装置与分布式储能装置。

分布式发电(Dist ributed Generation ,DG) 装置根据使用技术的不同,可分为热电冷联产发电、内燃机组发电、燃气轮机发电、小型水力发电、风力发电、太阳能光伏发电、燃料电池等;根据所使用的能源类型,DG可分为化石能源(煤炭、石油、天然气) 发电与可再生能源(风力、太阳能、潮汐、生物质、小水电等) 发电两种形式。分布式储能(Dist ributed Energy Storage ,DES) 装置是指模块化、可快速组装、接在配电网上的能量存储与转换装置。根据储能形式的不同,DES 可分为电化学储能(如蓄电池储能装置) 、电磁储能(如超导储能和超级电容器储能等) 、机械储能装置(如飞轮储能和压缩空气储能等) ,热能储能装置等。此外,近年来发展很快的电动汽车亦可在配电网需要时向其送电,因此也是一种DES。

2 分布式电源的发展

2. 1 分布式发电技术的发展

长期以来,电力系统向大机组、大电网、高电压的方向发展。进入20 世纪80 年代,各种分散布置的、小容量的发电技术又开始引起人们的关注,经过20 多年的发展,分布式发电已成为一股影响电力工业未来面貌的重要力量。引起这一变化的原因主要有以下几个方面。

1) 应对全球能源危机的需要。随着国际油价的不断飙升,能源安全问题日益突出,为了实现可持续发展,人们的目光转向了可再生能源,因此,风力发电、太阳能发电等备受关注,快速发展并开始规模化商业应用,而这些可再生能源的发电大都是小型的、星罗棋布的。

2) 保护环境的需要。CO2 排放引起的全球气候变暖问题,已引起各国政府的高度重视,并成为当今世界政治的核心议题之一。为保护环境,世界上工业发达国家纷纷立法,扶持可再生能源发电以及其他清洁发电技术(如热电联产微型燃气轮机) ,有利地推动了DG的发展。

3) 天然气发电技术的发展。对于天然气发电来说,机组容量并不明显影响机组的效率,并且天然气输送成本远远低于电力的传输,因此比较适合采用有小容量特点的DG。

4) 避免投资风险。由于难以准确地预测远期的电力需求增长情况,为规避风险,电力公司往往不愿意投资大型的发电厂以及长距离超高压输电线路。此外,高压线路走廊的选择也比较困难。这都促使电力公司选择一些投资小、见效快的DG项目来就地解决供电问题。

在国际上,DG 的发展方兴未艾。在美国,1978 年修改了《公共事业法》,以法律的形式要求各电力公司接受用户的小型能源系统,特别是热电机组并网;2000 年,热电联产装机容量已占总装机容量的7 %,预计到2010 年将占其总装机容量的14 %;2008 年,风力发电装机容量达2500 万kW;太阳能装机容量达87 万kW。欧洲在世界上最早开始应用DG。目前,丹麦、芬兰、挪威等国的DG容量均已接近或超过其总发电装机容量的50 %;欧洲DG 应用规模最大的德国,2008 年末风电装机容量达到2300 万kW ,太阳能发电装机容量达540 万kW。

我国应用的DG 原来主要以小水电为主,风电、光伏发电等起步相对较晚。2003 年以来,国家强力推进节能减排,颁布了《可再生能源法》并制定了一系列促进可再生能源利用与提高能效技术发展的政策。到2008 年底,我国风力发电装机容量达到1200 万kW ,跃居世界第三位;光伏发电装机容量达到14 万kW。

近年来,各国政府对能源安全与环境问题高度重视。美国、欧盟都提出2020 年应用可再生能源占总能源消费的比例超过20 %;我国也制定了2020 年应用可再生能源占消费总能源的比例达15 %的目标。目前,各国可再生能源发电容量在总发电装机容量中的比例远低于这些目标,可见DG的发展空间巨大。

目前,风力发电等可再生能源发电的成本还远高于常规燃煤发电,只有国家实行优惠的税收政策并给予一定的财政补贴,才能调动投资者发展DG 的积极性。其次,DG 也是制约DG发展的重要因素,因此,智能电网的提出,从技术上为解决这一问题创造了条件。

2. 2 分布式储能技术的发展

能量储存是电力系统调峰的有效手段,作为一种成熟的储能技术,抽水蓄能电站获得了大量应用。近年来,作为补偿DG输出间歇性、波动性的有效手段,分布式储能技术受到了人们的重视。

蓄电池是一种传统储能技术。钠硫电池具有大容量、高效率、结构紧凑、易扩展、对环境影响小等优点,技术进一步成熟后可用于城市电网和可再生能源发电补偿。超级电容器容量大、使用寿命长、环保,目前已有市场化应用。2005 年,美国加利福尼亚州建造了一台450 kW 的超级电容器储能装置,用以减轻950 kW 风力发电机组向电网输送功率的波动。飞轮储能效率高、寿命长,德国、美国等都在投资研制用于电网调峰的飞轮储能装置。超导磁能储能具有效率高、响应快等优点,目前已在风力发电系统中得到了应用。

总体来说,分布式储能技术还在发展之中,还没有实现大规模产业化,需要国家在政策上给于引导和扶持。

3 分布式电源并网对配电网的影响

3. 1 分布式电源并网的作用

分布式发电装置并网后会给配电网带来一系列积极的影响。

1) 提高供电可靠性。DER 可以弥补大电网在安全稳定性上的不足。含DER 的微电网可以在大电网停电时维持全部或部分重要用户的供电,避免大面积停电带来的严重后果。

2) 提高电网的防灾害水平。灾害期间,DER可维持部分重要负荷的供电,减少灾害损失。

3) DER 启停方便,调峰性能好,有利于平衡负荷。

4) DER 投资小、见效快。发展DG 可以减少、延缓对大型常规发电厂与输配电系统的投资,降低投资风险。

5) 可以满足特殊场合的用电需求。如用于大电网不易达到的偏远地区的供电;在重要集会或庆典上,DER 处于热备用状态可作为移动应急发电。

6) 减少传输损耗。DER 就近向用电设备供电,避免输电网长距离送电的电能传输损耗。

分布式储能装置并网后,可在负荷低谷时从电网上获取电能,而在负荷高峰时向电网送电,起到对负荷削峰填谷的作用,提高电网运行效率。其另一个重要作用,是与风能、太阳能等可再生能源发电装置配合使用,可就地补偿可再生能源发电装置功率输出的间歇性。

3. 2 分布式电源并网带来的技术问题

DER 的大量接入改变了传统配电网功率单向流动的状况,这给配电网带来一系列新的技术问题。

1) 电压调整问题。配电线路中接入DER ,将引起电压分布的变化。由于配电网调度人员难以掌握DER 的投入、退出时间以及发出的有功功率与无功功率的变化,使配电线路的电压调整控制十分困难。

2) 继电保护问题。DER 的并网会改变配电网原来故障时短路电流水平并影响电压与短路电流的分布,对继电保护系统带来影响:

(1) 引起保护拒动。DER 对保护动作的影响如图1 所示。如果一个DER 接在线路的M处,当线路末端k 处发生短路故障时,它向故障点送出短路电流并抬高M 处的电压,因此使母线处保护R 检测到的短路电流减少,从而降低保护动作的灵敏度,严重时会引起保护拒动。

智能配电网之分布式电源并网技术

图1 DER 对保护动作的影响

(2) 引起配电网保护误动。在相邻线路发生短路故障时,DER 提供的反向短路电流可能使保护误动作。

电化学工作站相关文章:电化学工作站原理
光伏发电相关文章:光伏发电原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭