超宽带无线电技术在医疗设备中的应用
为确保能无中断地传输视频流,UWB采用了分布式驻留协议(DRP)。由于UWB基于TDMA,网络成员可保留一些固定的时隙(媒体访问时隙)以保障和另一设备的通信。保留通道占用时隙的相关信息在信标时段传送。如果某一时隙被标记为“硬保留”,任何第三方都不可占用该时隙。这是保障视频传输要求的确定性数据传输速率所必须的。
实施方案
图5所示为内窥镜摄像头单元的框图。窥镜的框图与之相似,除了数字视频接口为显示控制器所取代。UWB物理层基于Wionics Research的RTU7012双波段PHY,符合WiMedia PHY 1.1 和PHY 1.2规范。它可以用于频带组1和3。
在这个例子中,UWB流媒体MAC由苏黎世应用科学大学设计并通过ASIC或FPGA实现,且针对实现低延时的数据传输进行了优化。为了方便将MAC集成到任何系统级芯片(SoC), 将ARM高级主机总线(AHB)用作数据传输总线,将ARM外设总线用作控制总线。这些接口使得MAC非常适合集成到基于ARM的系统级芯片。
UWB标准的许多参数都由微控制器固件来控制。这样,在需要增添其它高层协议(如无线USB)时,无须修改任何硬件。使用固件实施方案,可以在规范发生变更的情况下降低风险和提高灵活性。
图4电子内窥镜单元的框图
MAC可在UWB设备间以任何方向传输任何数据---而不局限于视频。在这个具体的视频应用中,来自摄像闲的信号通过数字视频接口和AHB传送到SDRAM,该SDRAM用作一个视频中间缓冲器(见图5)。MAC从该SDRAM提取视频数据,并将其传送到UWB网络进行传输。反过来,UWB物理层接收到的数据则被传送到SDRAM。
在UWB网络和SDRAM之间传输数据时,MAC用作AHB主总线,无需处理器核进行干预。这意味着,可以将数据传输中解放出来的处理器用于控制后续UWB超帧的MAC设置。在这种架构下,任何AHB总线设备都可成为数据传输的目标或源,无论是传送到UWB-MAC,还是从UWB-MAC传出。至于和UWB无线模块的接口,UWB-MAC采用WiMedia ECMA369 MAC-PHY接口标准。
内窥镜的其它必备部件包括A/D转换器和用于电池管理的脉宽调制器(PWM)。为将所有部件集成到内窥镜的手柄中,同时保持低功耗,标准单元ASIC是不错的选择。然而,如果预知的产量太低,不足以分担本示例中标准单元ASIC的开发成本,可采用可定制的应用处理器(CAP)。这一基于ARM的微控制器具备所有常用的外设和软件驱动以及用于实现用户定制功能的金属可编程逻辑区域。可在CAP金属可编程区域实现UWB-MAC和其它定制IP核,类似于门阵列。该微控制器的其它标准外设,如外部总线接口(EBI),可用于控制SDRAM,不会导致与内存控制器设计相关的技术风险和成本。
为便于UWB应用开发,有些供应商提供一款CAP UWB评估套件。CAP器件的固定部分可以当做一个标准的微控制器,和用于仿真金属可编程模块的高密度FPGA协同工作。这个评估套件可以快速地进行配置,仿真目前正开发的设计的性能。可在FPGA中实现UWB-MAC以及其它专用逻辑。
在一块扩展板卡上实现UWB物理层。CAP UWB评测工具套件与一台运行业界标准ARM开发工具的PC连接,用于完成系统开发和调试。这样的开发方式允许软、硬件开发同时进行,从而大幅缩短了开发时间。当系统经全面调试后,将UWB MAC和专用逻辑重新映像到CAP的金属可编程模块中,提供了元器件数目较少而完整的UWB收发器。
图5 UWB设备间的MAC数据传送
结论
这种低成本、中等批量的UWB设备可以用于无线医疗应用。这适合于单向的视频链路,也可以取代超声传感器的粗电缆,同时为病人提供必要的电流绝缘。牙科的X光胶片目前正在被X射线扫描仪所取代,后者可放置在病人口腔的。UWB可用于链接图像显示和存储设备。此外,手术机器人的定位外设可以通过一个可靠的UWB通道来交换数据。
UWB是一种新兴的技术,其具有传输延迟短、传输速率高、功耗小、电磁辐射低的特点。医疗器械制造商已经开始使用视频内窥镜和超声传感器技术,有部分原因是因为UWB具有传统的技术无法实现的确定的数据速率。此外,UWB的协议开销很低,要让医生能够以低延迟或实时地观察病人体内的情况,低协议开销很重要。
助听器原理相关文章:助听器原理
评论