超声设计灵活性的实现方法
对于当今的超声应用市场,便携性和高性能是系统设计师要满足的两个关键指标。便携性推动超声系统向更小的尺寸演进,以满足用户对“可装进口袋”的复杂超声工具的需求,与此同时,性能要求则决定了整个系统的动态范围。更高的动态范围或更低的噪声可提供更高质量的图像,从而使医生能更好地进行诊断。为普通医生和临床医生提供高性能的便携式超声医疗仪器,对系统设计师和系统内的元器件提出了越来越高的要求。
本文引用地址:http://www.amcfsurvey.com/article/199325.htm本文将探讨提供便携式高性能超声产品所必须满足的一些最重要设计考虑,以及超声系统设计师如何实现为目前全球市场开发新的成像产品所需的灵活性。
系统权衡
尽管超声系统多年的研究和开发已经取得了重大的技术进步,但它仍然很复杂。与其它的复杂系统一样,也存在许多的系统划分方法。
多年来,制造商通过设计他们自己的定制ASIC 来实现这些复杂系统。这种解决方案通常由两个ASIC 组成,它们集成了时间增益压缩(TGC)和Rx/Tx 路径上的大部分元器件,如图1 所示。这一方法在多通道VGA、ADC 和DAC 广为出现之前很常见。定制电路允许设计师集成一些灵活的低成本功能特性,它们随着时间的推移可体现出成本优势,因为把信号链的大部分集成在一起可将外部元件数量减至最少。不幸的是,随着时间的推移,基于光刻技术制造出来的ASIC 在集成度和功耗两方面皆显示出它的局限性。ASIC 拥有大量的逻辑门,但这一数字技术并不是被优化用来成功地实现模拟功能特性的,如高性能ADC。此外,由于供应商数量有限,ASIC 还使得系统设计师只能在一个很小的范围内进行选择。
图中文字:PROBE 探头
T/R Switch 发送/接收开关
HV MUX 高电压多路复用器
HV AMP 高电压放大器
BEAMFORMER CONTROL 波束成形控制
AAF 抗混叠滤波器
High-Speed ADC 高速ADC
CLOCKS 时钟
Digital Beamformer 数字波束成形器
Precision ADC 高精度ADC
I/Q Processing I/Q 正交处理
Doppler Processing 多普勒处理
尽管高性能成像系统可以采用这一系统划分方法来实现,但从便携性、尺寸和功耗的角度来看这并不是最优的。4 通道和8 通道TGC、ADC 和DAC 的出现允许在不牺牲性能的前提下进一步减少尺寸和功耗,从而将新的系统设计方法和新的供应商带进了这些市场。多通道元件允许设计师在PCB 上将元件放得更紧密,从而可提高系统中的通道数;它们也允许设计师将敏感电路分开放在两块或更多的子板上,来完成一个系统的设计,这可以有效地重复利用许多平台开发中成熟的电子电路。
附注:随著通道数的增加,动态范围也将得到提高。噪声可被有效地视为系统中的不相关成份加以处理。通过将系统的通道数翻番,噪声即可降低一半,动态范围可增加3 分贝。因此,与16 通道系统相比,一个64 通道系统可以将动态范围提高12dB 之多。
不过这一方法存在一些缺点:增加通道数可能使PCB 布线成为一个“梦魇”,在某些情况下这将迫使设计师采用较小通道数的元件。这也为机械设计师带来了新的热处理挑战,不仅增加了系统成本,而且还增加了风扇噪音。
今天,IC 制造商能够集成完整的多通道TGC 路径,如图2 所示。多通道、多元件集成使得超声系统设计变得更容易,并可在不牺牲性能的前提下减少PCB 板尺寸和功耗。随著更高集成度方案变得更加占据主导地位,其在成本、尺寸和功耗降低方面的优势将进一步体现出来,并将使得系统的散热量更低、电池寿命更长。
超声子系统(如ADI 公司集成了LNA/AAF/ADC 和交叉点开关的AD9272/AD9273)实现了完整的TGC 路径,这是超声系统最常见的接收路径。这两个器件为系统设计师提供了在性能和功耗之间进行权衡的灵活性:高性能AD9272 具有低噪声特性(0.75nV/rt-Hz),低功耗AD9273 在采样率为40MSPS 时每个完整TGC 通道仅消耗100mW。这两款引脚兼容的器件采用串行I/O 来实现低引脚数。它们均采用紧凑的14mm×14mm×1.2mm 封装,与多芯片解决方案相比,它们可将每通道占位面积和功耗降低33%以上。
评论