基于改进的小波神经网络的汽车电控汽油机故障诊断
3 汽车电控汽油机故障类型识别网络的仿真与测试
3.1 样本的提取
由于电控汽油机规格品种繁多且系统结构复杂,因此,汽油机的故障也多种多样。本文选取了11种有代表性的电控汽油机的故障现象,和与其对应的11种有代表性的故障原因分别为如表l所示:
3.2 网络的训练
用于汽车电控汽油机故障诊断的改进的小波网络的输入层有11个节点,对应与11种故障现象;输出层有11个节点,对应于11种故障原因。经过多次反复的试验,隐含层选择15个神经元即可满足误差要求。
小波网络的训练参数:最大训练次数、目标误差、学习步长,动量系数分别选为:3000、O.00l、0.1、0.2。
本文分别有BP神经网络,未改进的小波神经网络和改进的小波神经网络度样本进行了训练,网络训练的误差曲线分别为图2、图3、图4。我们可以看出BP网络需要560步才能达到满足要求的误差,未改进的小波神经网络需要68步就能达到满足要求的误差,而改进的小波神经网络只需28步就能达到满足要求的误差。因此,可以得出改进的小波神经网络具有更强的逼近能力、网络学习收敛速度加快、能有效避免局部最小值问题等优点。
4 结束语
本文对小波神经网络提出了两个方面的改进并将其应用于汽车电控汽油机故障诊断中。仿真结果表明:此改进的小波神经网络算法进行汽车电控汽油机的故障是有效的,而且与传统的BP神经网络相比,该改进的小波神经网络具有更强的逼近能力,更快的网络学习收敛速度。并且参数的选取有理论指导,能够有效避免局部最小值问题。
评论