25T型空调客车DC600V/DC110V8kW充电系统应用研究
DC600V/DC110V8kW充电系统是为DC600V供电系统的25T型客车设计的专用系统,该充电系统由1个8 kW充电器模块和1个3.5 kV・A单相逆变器模块组成,为铁路空调客车蓄电池提供浮充电源。同时向其他直流负载供电,供蓄电池充电及照明控制等系统使用。
2 系统组成
该25T型空调客车DC600V/DCI110V 8 kW充电系统是由单机和机柜两大部分组成,其中,单机部分主要有主电路和控制电路;机柜部分包括对外进线端子、输入输出回路熔断器和控制用的空气开关等。
2.1 PWM高频桥式逆变主电路分析及实现
DC600V/DC110V 8 kW充电系统输入电压为DC600 V,功率为8 kW,采用适应高压变换的桥式整流电路和大功率DC/DC变换电路,图1为系统PWM高频桥式DC/DC变换的电路原理图。整个系统由输入隔离、滤波和缓冲电路组成。逆变桥由4只IGBT组成,高频变压器传输功率,变压器输出经高频整流和滤波后,供给直流负载和蓄电池。图2为由V1-V4构成DC/DC变换的主电路的控制逻辑和变压器原副边电压逻辑波形图:t1-t2区间内,V1和V4导通,变压器原边电压为正相电压;t3~t4区间内,V2和V3导通,变压器原边电压为反相电压。
图3为25T型空调客车DC600V/DC110V充电系统主电路。分析图2、图3可知,开关元件IGBT功率模块(V1、V2)高频变压器的初级经隔离直流电容C8和电感L2接电桥的对角线。变压器次级接全波整流器(V56)和滤波器L3、C9、C10输出119~123 V直流电。主控制电路使用移相控制集成电路,UC3875(UC2875)为控制器件,输出两组(A-B,C-D)180°互补且滞后、时间可调的IGBT栅极触发信号。进一步分析可知,系统在t2~t3区间内所有IGBT都不导通,这段时间称为“死区”,以防止上下桥臂的两只IGBT同时导通而造成桥臂“贯通”短路。
系统在设计时考虑充电器用的IGBT一般采用双单元,即在一个模块集成上下桥臂两个IGBT,电路结构虽然简单,但由于IGBT作频率很高,一般均在20 kHz左右,因此其开关损耗大,散热困难。为解决高频的开关损耗问题,系统采用移相技术实现IGBT的准软开关控制。移相软开关电路具有工作频率不变、控制简单、效率高、干扰小等优点。移相控制原理:利用变压器漏感和IGBT结间的电容谐振,漏感LK储能向电容C释放过程中,使电容C的电压逐步下降到0,二极管VD导通,创造0电压开关(ZVS)条件,电路中其他电感、电容元件是为获得可靠的零电压开关而设置的。电桥左右两个桥臂的上下两个开关管(V1和V2,V3和V4)施以180°互补的驱动信号,上下两管180°互补导通。除上下两管导通的死区外,电路中总有两个开关管同时导通,共有4种导通组合,即V1和V4,V4和V2,V2和V3,V3和V1,并按此顺序周而复始。其中V1和V4,V2和V3组合导通(即对角线导通)时,全桥电路给出能量,而V3和V1,V4合V2组合导通(即上桥臂两管或下桥臂两管同时导通)时,全桥电路处于续流状态不输出能量。调节这两种组合的时间比例,即移相角,变压器得到一个交变的PWM电压,从而调整输出电压、电流。
评论