铁路检测仪中陀螺仪的信号采集电路设计
该系统选用的陀螺仪信号输出电压范围为-3~+3 V,在实际使用中,其输出电压在-O.03~+O.03 V之间浮动。由于陀螺输出的信号较弱,而选用的A/D芯片有效的转换电压范围是0~3 V,所以对陀螺仪输出信号放大10倍,并平移1.5 V,这样就能保证信号能在A/D芯片有效的信号采集范围内。设定陀螺输出信号为Vin,进入A/D芯片的信号电压为Vi,那么就有:
Vi=10×Vin+1.5 V
由于Vin输出电压信号很微弱,如果此处平移的1.5 V不够精确,就会直接降低陀螺仪信号的准确性,因此对信号平移电路的设计提出了很高的要求。为此电路中采用了ADR433A芯片,尽量保证获取1.5 V电压的精度。根据上述分析,设计的信号采集电路如图3所示。A/D转换芯片采用ADS8381。本文引用地址:http://www.amcfsurvey.com/article/195037.htm
3 软件设计
3.1 软件流程
数据采集系统软件流程如图4所示。系统接收到启动命令后,开始启动系统电路。启动后,系统首先等待采集触发信号。当接收到采集触发信号时,单片机发送信号分别选取两路A/D芯片工作,A/D芯片分别对两路陀螺仪输出数据进行A/D转换。由于选用的A/D芯片的转换速率为580 kHz,能够在0.18 ms内完成100次数据采集,实际上每路陀螺信号采集50次求平均值,因此可以认为两路信号是同时被采集的。然后,单片机对采集到的两组数据分别进行数据滤波、角速度计算等处理以获取角度数值,并把这两组数据上传给上位机进行后续处理。
3.2 电压补偿推导
陀螺仪在静止状态下输出的电压信号为零,当陀螺仪的姿态持续改变时,其输出的信号也会随之改变。基于陀螺仪的这种特性,检测仪开始运行前默认陀螺仪输出的电压为0 V,并以平移的1.5 V作为相对零点。在实验过程中发现,所采集的轨向和高低数据与理论推算值浮动较大,针对这一问题,在该系统中采用电压补偿方法进行解决。本文提出了动态电压补偿方法,提高了实际相对零点精度。在介绍这种方法的推导之前,先说明一些符号的含义。
SF:标度因数(比例系数)。
Ugyro:陀螺仪输出信号电压。
Ucode:理想状态下,A/D转换前获取电压转换的二进制编码。理想状态下,P·Ucode=10·Ugyro+1.5 V。
注意:A/D转换前获取的电压为陀螺输出信号放大10倍且平移1.5 V后的信号。
Ucode0:实际测量条件下,A/D转换前获取电压转换的二进制编码。
ω:陀螺输出的角速度。ω=Ugyro/SF=(P·Ucode-1.5 V)/(10SF)。
理论上,陀螺仪输出信号被放大10倍并平移1.5 V,陀螺输出的信号经过单片机处理后上传给上位机。连续状态下陀螺仪的角度计算如下:
评论