波束成形系统的相位测量
利用多天线实现高性能
为了支持新型应用,如智能手机之类,个人通信设备对数据吞吐速率的要求越来越高,在给定的带宽和覆盖区域,要提高吞吐速率,必须提高信噪比(SNR),这意味着需要提高功率,或者降低噪声,或者同时采取这两种措施。提高信号电平的一种方法是使用输出功率更高的功率放大器(PA),但这种方法会显著提高基站的运行成本,并且可能导致相邻小区的干扰增大。降低接收机系统噪声也是可行的,但要在一个已经优化的系统上获得若干dB以上的改善,可能需要付出九牛二虎之力。
如果使用多个信号路径和一个天线阵列,则可以使天线阵列的聚集辐射场型在目标接收机的方向上具有更高的增益,而在其它方向上的增益则低得多。在目标接收机方向上的较高发射机增益可提高接收机的信号电平,但同时也会对正好处于发射机窄波束内的其它接收机造成更大的干扰。指向发射机的较窄高增益接收场型可减小相邻基站和移动设备对接收机的干扰。这两种效应均能提高接收机的信噪比(SNR)。
图1显示一个系统架构的框图,其中四根天线共用同一信号。中间两根天线的导体呈回旋状,目的是强调所有天线的电缆长度必须相等。
图1 4天线系统
图2显示该系统的仿真响应,假设这些天线为全向天线。天线位于穿过180度和0度的轴线上。该极坐标图的径向轴表示相对于单根全向天线的增益(dB)。
图2 相对于单根天线响应的4天线响应(dB)
波束成形和波束控制
图1中的架构可用于目前的许多应用中,但要充分发挥窄波束系统的优势,必须进行动态波束控制(移动主波束)或波束成形(移动主波束和零陷)。波束控制要求基带处理器(BBP)改变各天线信号的相位,波束成形则要求BBP改变各天线信号的相位和幅度。除非另有说明,本文中的“波束成形”同时包括波束控制和波束成形。图3所示为一个波束成形实现系统。为清楚起见,图中仅显示发射路径。
图3 提供波束控制/波束成形的4天线系统
评论