新闻中心

EEPW首页 > 测试测量 > 设计应用 > MATLAB应用在基于噪声检测的图像均值去噪法

MATLAB应用在基于噪声检测的图像均值去噪法

作者:时间:2011-05-27来源:网络收藏

引言

本文引用地址:http://www.amcfsurvey.com/article/194932.htm

  是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视知觉的实体,是人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。研究表明,人类获取的视觉信息在人类接受的信息中的比重达到75%,“百闻不如一见”便是非常形象的例子之一。在高度信息化条件下的今天,数字越来越得到普及和应用。

  然而,人们在获取和传输数字图像的同时,难免于图像数据被外界噪声所污染,妨碍了人们对图像信息的理解。由此,图像技术应运而生。图像,即在尽可能地不损失原图像细节的前提下,去除图像中无关的噪点。现有的图像方法[11很多,如:

  1 均值滤渡器

  均值滤波器是一种典型的线性去噪方法,因为其运算简单快速,同时又能够较为有效地去除高斯噪声。因而适用面较广。

  许多滤除噪声方法都是在此基础上发展而来的。其缺点是严重破坏了图像的边缘,模糊了图像。

  2 低通滤波器

  低通滤波器,信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的;而在较高频段,感兴趣的信息常被噪声所淹没。因此。一个能降低高频成分幅度的滤波器就能减弱噪声的看的见的影响。这是一种频域处理法。在分析图像信号的频率特性时,一幅图像的边缘、跳跃部分以及颗粒噪声代表图像信号的高频分量,而大面积的背景区则代表低频分量。用滤渡的方法滤除其高频部分就能去掉噪声,使图像得到平滑。但同时,有用的高频成分也滤除了。因此这种处理是以牺牲清晰度为代价的。

  3 中值滤波器

  中值滤波器是一种消除噪声的非线性处理方法,它是由Tueky在1971年提出的。它的基本原理是把数字图像或数字序列中一点的值用该点的一个邻近各点值的中值代替。中值定义如下:对一个数字序列的元素进行排序,如果元素个数为奇数,则取排序后序列的中间值。如果序列元素个数为偶数,则取排序后序列的中间两个值的均值。

  把一个点的特定长度或形状的领域称作窗口。在一维情况下,中值滤波器是一个含有奇数个像素的滑动窗口。窗口正中问那个像素的值用窗口内各像素值的中值代替。

  该滤波器是一种典型的非线性处理方法。它的优势在对图像中脉冲噪声消除极为有效,且能够较好地保护图像边缘信息。

  弱点是因为涉及大量排序运算,运算速度较慢,对图像的实时处理有影响。图像一般要传化成数字图像后才可以使用计算机对其进行各种处理。数字图像,是以数字的形式而存在的。利用(矩阵实验室)进行处理时,我们简单地理解它为一定大小的数字矩阵。矩阵中的每个效字代表图像的一个像索点。由此可以知道,对数字图像的处理,实际上就是对一个数字矩阵的运算处理。

  为了研究方便,我们的方法是人工的给原图像添加噪声·主要是不同强度的正态分布随机噪声和脉冲噪声。在中,正态分布噪声是由randn函数实现的,而脉冲噪声,即平常所说的椒盐噪声,是由imnoise(Io,’saIt 8L pepper,i)实现的。其中Io是原图像矩阵,i取值。至1之间,表示噪声的强度。

低通滤波器相关文章:低通滤波器原理



上一页 1 2 3 下一页

关键词: MATLAB 检测 图像 去噪

评论


相关推荐

技术专区

关闭