新闻中心

EEPW首页 > EDA/PCB > 设计应用 > 高阶累积量调制识别改进算法的FPGA实现

高阶累积量调制识别改进算法的FPGA实现

作者:时间:2011-01-17来源:网络收藏

摘要:基于的数字调制信号识别算法在低信噪比环境下识别率较低。针对这一问题,提出了,通过调整特征参数的判别顺序先识别出MASK信号的方式,取得了较好的效果。讨论了该算法的设计,并利用Virtex-4开发板对该设计进行硬件协同仿真测试。测试结果表明,该算法在低信噪比环境下对2ASK,4ASK,4PSK,16QAM信号的识别率有显著提高。在信噪比为4dB时,对2ASK,4A-SK信号的识别率分别为93.4%,100%。在信噪比为2 dB时,对4PSK,16QAM信号的识别率最高,达到了99.7%。
关键词:System Generator;

0 引言
由于数字调制信号越来越多地应用于通信信号处理领域,因此对数字信号的研究也越来越多。传统的的判决方法有:决策判决法、高阶累积量算法和人工神经网络算法等。但是决策判决法在低信噪比环境中识别率不高,而基于人工神经网络的识别方法计算复杂度较高。信号的高阶累积量算法具有很好的抗噪性能,故对基于高阶累积量的通信信号调制识别算法的研究受到了广泛重视。文献利用高阶累积量实现了对 2ASK/BPSK,4ASK,4PSK,2FSK,4FSK信号的分类。文献利用四阶和六阶累积量实现了对 2ASK,4ASK,8ASK,QPSK,8P-SK,16QAM信号的分类。文献利用二、四、六阶累积量实现了对 2ASK/BPSK,4ASK,QPSK,2FSK,4FSK,8FSK,16QAM信号的分类。文献对高阶累积量的四阶、五阶累积量进行了优化和仿真,但是在低信噪比的环境下,对信号的识别率都不高。
在寻找更优识别算法的过程中,以往的研究更多的把注意力放在了识别算法上,而没注重算法的硬件设计与实现。System Generator for DSP是Xilinx公司开发的一款理想的DSP开发软件,它对数字信号处理单元进行系统建模,并将模型转换成可靠的硬件实现,是连接数字信号处理高层系统设计与Xilinx 实现的桥梁。针对上述问题,本文提出了高阶累积量的,并在System Generator中实现了算法的FPGA设计。

1 高阶累积量的
数字信号的调制识别通常经过三个步骤:接收信号预处理、特征参数提取和调制方式识别。然而实现信号调制识别的关键环节是从接收信号中提取出用于识别的特征参数。下面首先介绍高阶累积量算法是如何提取用于调制识别的特征参数的。
1.1 特征参数的提取
首先给出高阶矩的定义,对于一个具有零均值的复随机过程X(t),其p阶混合矩可表示为:Mpq=E[X(t)p-qX*(t)q]。其中,*表示函数的共轭。然后定义高阶累积量如下:
d.JPG
设信号的能量为E,利用文献中提出的算术平均来代替统计平均的方法,计算各种数字调制信号的高阶累积量,得到高阶累积量的理论值,如表1所示。
e.JPG

从表1中可以看出,从信号的高阶累积量中提取特征参数,可以实现大部分信号的分类,而由于2ASK和BPSK信号的各累积量值相同,故利用高阶累积量无法实现其分类。MFSK的高阶累积量也相同,直接利用累积量无法实现其类内识别。


上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭